0! = 1 n! = n * (n-1)! (n > 0)We say that a divides b if there exists an integer k such that
k*a = b
The input to your program consists of several lines, each containing two non-negative integers, n and m, both less than 2^31. For each input line, output a line stating whether or not m divides n!, in the format shown below.
6 9 6 27 20 10000 20 100000 1000 1009
9 divides 6! 27 does not divide 6! 10000 divides 20! 100000 does not divide 20! 1009 does not divide 1000!
#include<stdio.h> #include<string.h> #include<math.h> const int MAXN = 100005; int vis[MAXN], prime[10000], num; void get_prime() //筛法求素数 { num = 0; memset(vis, 0, sizeof(vis)); for(int i = 2; i < MAXN; i++) { if(!vis[i]) { prime[num++] = i; for(int j = i + i; j < MAXN; j += i) vis[j] = 1; } } } int Cal(int w, int p) //计算w的阶乘中有多少个p { int ans = 0; while(w) { w /= p; ans += w; } return ans; } bool judge(int n, int m) { int k = (int)sqrt(m+0.5); for(int i = 0; i < num && prime[i] <= k; i++) { if(m % prime[i] == 0) { int cnt = 0; while(m % prime[i] == 0) { cnt++; m /= prime[i]; } if(Cal(n, prime[i]) < cnt) return false; } } //此时若 m!=1,则m必为素数,如果n>=m,则m必定可以整除n! if(m > 1 && n < m) return false; return true; } int main() { int n, m; get_prime(); while(~scanf("%d%d",&n,&m)) { if(judge(n, m)) printf("%d divides %d!\n", m, n); else printf("%d does not divide %d!\n", m, n); } return 0; }
UVA 10139 Factovisors(数论),布布扣,bubuko.com
原文地址:http://blog.csdn.net/lyhvoyage/article/details/37911527