码迷,mamicode.com
首页 > 其他好文 > 详细

二叉搜索树转换为有序双向链表

时间:2015-10-15 18:38:30      阅读:184      评论:0      收藏:0      [点我收藏+]

标签:

http://blog.csdn.net/ljianhui/article/details/22338405

一、问题描述
输入一棵二叉搜索树,现在要将该二叉搜索树转换成一个排序的双向链表。而且在转换的过程中,不能创建任何新的结点,只能调整树中的结点指针的指向来实现。
 
二、实现思路
在二叉搜索树中,每个结点都有两个分别指向其左、右子树的指针,左子树结点的值总是小于父结点的值,右子树结点的值总是大于父结点的值。而在双向链表中,每个结点也有两个指针,它们分别指向前一个结点和后一个结点。所以这两种数据结构的结点是一致,二叉搜索树之所以为二叉搜索树,双向链表之所以为双向链表,只是因为两个指针的指向不同而已,通过改变其指针的指向来实现是完全可能的。
 
例如如下的二叉搜索树,
技术分享
技术分享
 
若采用中序遍历,其遍历顺序为1-2-3-4-5-6-7,通过适当的指针变换操作,可变成的双向有序链表如下:
 
技术分享
 
从上图,我们可以看出,为了减少指针的变换次数,并让操作更加简单,在转换成排序双向链表时,原先指向左子结点的指针调整为链表中指向前一个结点的指针,原先指向右子结点的指针调整为链表中指向下一个结点的指针。例如对于上面的值为2的指点,调整后,它的前一个结点为1,后一个结点为3,而结点2的左子结点本来就为1,右子结点本来就为3.
 
对于树的操作,通常是在遍历树的各个结点的过程中,通过对结点实施某些操作来完成的,这个算法也不例外。由于要求转换后的双向链表也是有序的,而我们从上面也可以看到,当我们以中序遍历二叉搜索树时,其遍历的结点就是有序的,所以在这里我位采用的遍历顺序应该是中序。
 
那么我们应该如何调整指针,让二叉搜索树变成一个双向有序链表呢?当遍历到根结点时,我们可以把树看成三个部分:根结点,根的左子树和根的右子树。如上图的二叉排序树,就分成了根结点4、以结点2为根的左子对和以结点6为根的右子树。从变换的链表中我们可以看到,应当把结点4的left指针指向结点3,把结点3的right指针指向结点4,而由于我们采用的是中序遍历,所以当我们遍历到结点4时,结点4的左子树已经转化为一个有序的双向链表,而结点3是这个已经转化的双向链表的尾结点,所以我们应该用一个变量last_node来保存最后一个结点的指针,以便在与根结点连续时使用。然后把这个变量last_node的值更新为指向根结点4。对于结点4的右子树,采取相似的操作。至于具体的实现,我们只需要对所有的子树递归地执行上述操作即可。其操作过程如下:
 
技术分享
技术分享
 
三、实现代码
 
  1. #include <iostream>  
  2. #include <stdlib.h>  
  3. #include <time.h>  
  4.   
  5. using std::cout;  
  6. using std::cin;  
  7. using std::endl;  
  8. struct BSNode  
  9. {  
  10.     //定义二叉搜索树的结点结构  
  11.     BSNode *left;  
  12.     BSNode *right;  
  13.     int data;  
  14. };  
  15. //定义各种用到数据类型  
  16. typedef BSNode* BSTree;  
  17. typedef BSNode* DList;  
  18. typedef BSNode DLNode;  
  19. //往二叉搜索树tree中插入值为data的结点  
  20. BSTree InsertNode(BSTree tree, int data);  
  21. //把二叉搜索树tree转化成双向链表,返回头结点  
  22. DList BSTreeToList(BSTree tree);  
  23. //遍历二叉搜索树tree的各个结点,并进行指针调整  
  24. void ConvertNode(BSTree tree, BSNode **last_node);  
  25. //查找二叉搜索树tree的最左结点  
  26. BSNode* FindLeftmostNode(BSTree tree);  
  27. //以中序输出二叉搜索树tree  
  28. void PrintBiTree(BSTree tree);  
  29. //输出链表  
  30. void PrintList(DList list);  
  31. BSTree InsertNode(BSTree tree, int data)  
  32. {  
  33.     if(tree == NULL)  
  34.     {  
  35.         //找到插入点,则插入  
  36.         tree = new BSNode;  
  37.         tree->left = NULL;  
  38.         tree->right = NULL;  
  39.         tree->data = data;  
  40.     }  
  41.     //插入在其右子树中  
  42.     else if(tree->data < data)  
  43.         tree->right = InsertNode(tree->right, data);  
  44.     //插入在其左子树中  
  45.     else if(tree->data > data)  
  46.         tree->left = InsertNode(tree->left, data);  
  47.     return tree;  
  48. }  
  49. DList BSTreeToList(BSTree tree)  
  50. {  
  51.     if(tree == NULL)  
  52.         return NULL;  
  53.     //找到最左边的结点,即转换后链表的头结点  
  54.     DLNode *head = FindLeftmostNode(tree);  
  55.     BSNode *last_node = NULL;  
  56.     //进行转换  
  57.     ConvertNode(tree, &last_node);  
  58.     return head;  
  59. }  
  60. BSNode* FindLeftmostNode(BSTree tree)  
  61. {  
  62.     if(tree == NULL)  
  63.         return NULL;  
  64.     while(tree->left != NULL)  
  65.         tree = tree->left;  
  66.     return tree;  
  67. }  
  68. void ConvertNode(BSTree tree, BSNode **last_node)  
  69. {  
  70.     if(tree == NULL)  
  71.         return;  
  72.     //对tree的左子树进行转换,last_node是转换后链表最后一个结点的指针  
  73.     if(tree->left != NULL)  
  74.         ConvertNode(tree->left, last_node);  
  75.     //调整tree的left指针,指向上一个结点  
  76.     tree->left = *last_node;  
  77.     //调整指向最后一个结点,right指向下一个结点  
  78.     if(*last_node != NULL)  
  79.         (*last_node)->right = tree;  
  80.     //调整指向最后链表一个结点的指针  
  81.     *last_node = tree;  
  82.     //对tree的右子树进行转换,last_node是转换后链表最后一个结点的指针  
  83.     if(tree->right != NULL)  
  84.         ConvertNode(tree->right, last_node);  
  85. }  
  86. void PrintBSTree(BSTree tree)  
  87. {  
  88.     if(tree == NULL)  
  89.         return;  
  90.     PrintBSTree(tree->left);  
  91.     cout << tree->data << " ";  
  92.     PrintBSTree(tree->right);  
  93. }  
  94. void PrintList(DList list)  
  95. {  
  96.     DLNode *node = list;  
  97.     while(node != NULL)  
  98.     {  
  99.         cout << node->data << " ";  
  100.         node = node->right;  
  101.     }  
  102. }  
  103. int main()  
  104. {  
  105.     BSTree tree = NULL;  
  106.     srand(time(NULL));  
  107.     cout << "Insert Data Order is:" << endl;  
  108.     for(int i = 0; i < 10; ++i)  
  109.     {  
  110.         //插入随机的10个数,生成二叉排序树  
  111.         int data = rand()%100;  
  112.         cout << data << " ";  
  113.         tree = InsertNode(tree, data);  
  114.     }  
  115.     cout << "\nThe BSTree is: " << endl;  
  116.     PrintBSTree(tree);  
  117.     //进行转换  
  118.     tree = BSTreeToList(tree);  
  119.     cout << "\nBiTree To List: "<< endl;  
  120.     PrintList(tree);  
  121.     return 0;  
  122. }  
运行结果如下:
技术分享
技术分享
 
四、代码分析
由于二叉排序树中不允许有相同的元素,在随机产生的10个数中,有两个是相同的3和73,所以实际插入到二叉排序树中的结点只有8个,然后我们以中序方式遍历输出二叉排序树中的数据,然后输出转换后的链表的数据,发现其顺序是一致的,从而证明算法的正确性。
 
该算法的实现的核心函数为BSTreeToList,ConvertNode和FindLeftMostNode.
 
我们可以看到在函数BSTreeToList中,我们有一个变量last_node用来记录转换了的链表末结点,由于在惯例中,我们会返回链表的第1个结点(从1开始计数)的指针,而last_node指向的却是末结点,我们可以通过该指针来从尾走到头来获取第一个结点的指针,但是在这里我却没有这样做,因为它需要对每个结点都遍历一次,时间复杂度为O(n)。而是在变换前,找到二叉排序树的最左结点的指针。因为排序二叉树是有序的,最左的结点即为最小的结点,而我们的算法也不会删除或新增结点,也就是说结点的地址是不会改变的,所以最左的结点就是转换后的链表的第1个结点,其时间复杂度为O(logN)。
 
五、时间复杂度与空间复杂度
该算法首先从根要点一直向左走,找到最左边的结点,其时间复杂度为O(logN),然后对二叉排序树中的每个结点遍历一次,进行指针变换,其时间复杂度为O(N),所以总的时间复杂度为O(N)。
 
至于空间复杂度,由于ConvertNode函数进行递归调用,其函数有两个开参,而函数栈中的函数调用层数不会超过树高,所以其空间复杂度为O(logN)。

二叉搜索树转换为有序双向链表

标签:

原文地址:http://www.cnblogs.com/zhizhan/p/4882979.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!