标签:
转载请注明出处:http://blog.csdn.net/ns_code/article/details/26966159
输入n个整数,找出当中最小的K个数。比如输入4,5,1,6,2,7,3,8这8个数字。则最小的4个数字是1,2,3,4。
每一个測试案例包含2行:
第一行为2个整数n,k(1<=n,k<=200000),表示数组的长度。
第二行包含n个整数。表示这n个数,数组中的数的范围是[0,1000 000 000]。
相应每一个測试案例,输出最小的k个数。并按从小到大顺序打印。
8 4
4 5 1 6 2 7 3 8
1 2 3 4
1、最直观的思路依旧是对数组进行高速排序。而后取出前k个元素。这样的时间复杂度为O(nlogn)
2、这里能够採用相似于上面那道题目的基于Partition的方法,仅仅是这次要求的分界点不是中位数,而是第k小的数,即排序后应该位于数组的第k-1个位置上的元素,这样该分界点前面的k个元素(包含该分界点)便是最小的k个数(这k个数字不一定是排序的)。跟上面那道题目分析的一样,这样的方法的平均时间复杂度为O(n),最坏情况下的时间复杂度为O(n*n),一样也能够用算法导论上提出的切割数组的方法。将最坏情况下的时间复杂度控制到O(n)。
代码例如以下:
#include<stdio.h> #include<stdlib.h> #include<time.h> void Swap(int *a,int *b) { if(*a != *b) { *a = *a + *b; *b = *a - *b; *a = *a - *b; } } /* 算法导论版快排的Partition函数 */ int Partition(int *A,int low,int high) { if(A==NULL || low<0 || high<0 || low>=high) return -1; int small = low-1; int j; for(j=low;j<high;j++) { if(A[j] <= A[high]) { ++small; if(j != small) Swap(&A[j],&A[small]); } } ++small; Swap(&A[small],&A[high]); return small; } int Random_Partition(int *A,int low,int high) { //设置随机种子 srand((unsigned)time(0)); int index = low + rand()%(high-low+1); Swap(&A[index],&A[high]); return Partition(A,low,high); } /* 返回数组A中出现次数超过一半的数字 基于Partition函数的实现 */ void MinKNum(int *A,int len,int k) { if(A==NULL || len<1) return; int low = 0; int high = len-1; int index = Random_Partition(A,low,high); while(index != k-1) { if(index > k-1) index = Random_Partition(A,low,index-1); else index = Random_Partition(A,index+1,high); } } int main() { int n,k; while(scanf("%d %d",&n,&k) != EOF) { int *A = (int *)malloc(sizeof(int)*n); if(A == NULL) exit(EXIT_FAILURE); int i; for(i=0;i<n;i++) scanf("%d",A+i); MinKNum(A,n,k); for(i=0;i<k;i++) { printf("%d ",A[i]); } printf("\n"); } return 0; }3、能够考虑採用小顶堆,将数组的n个元素建成一个小顶堆,这样最小的元素就位于堆顶,将它与数组的最后一个元素交换。这样最小的元素就保存在了数组的最后一个位置。而后相同利用堆排序的思想。调整前面的n-1个元素,使之再次构成一个小顶堆,这样k次调整后,最小的k个元素便保存在了数组的最后k个位置,并且是从右向左依次增大。
这样的方法。建立小顶堆须要O(n)的时间,而后筛选出k个最小的数须要对堆调整k次。每次调整所需时间依次为O(logn)、O(log(n-1))、O(log(n-2))...O(log(n-k))。能够近似觉得每次调整须要的时间为O(logn)。这样,该方法的时间复杂度为O(n+klogn),至于空间复杂度。假设能够改变输入的数组,我们能够直接在数组上建堆和调整堆。这是空间复杂度为O(1)。假设不能改变输入数组的话,我们就要建立一个小顶堆。这样空间复杂度为O(n)。
我在九度OJ上採用的这样的方法run,结果AC,代码例如以下:
#include<stdio.h> #include<stdlib.h> /* arr[start+1...end]满足小顶堆的定义, 将arr[start]增加到小顶堆arr[start+1...end]中, 调整arr[start]的位置,使arr[start...end]也成为小顶堆 注:因为数组从0開始计算序号,也就是二叉堆的根节点序号为0, 因此序号为i的左右子节点的序号分别为2i+1和2i+2 */ void HeapAdjustDown(int *arr,int start,int end) { int temp = arr[start]; //保存当前节点 int i = 2*start+1; //该节点的左孩子在数组中的位置序号 while(i<=end) { //找出左右孩子中最小的那个 if(i+1<=end && arr[i+1]<arr[i]) i++; //假设符合堆的定义,则不用调整位置 if(arr[i]>=temp) break; //最小的子节点向上移动,替换掉其父节点 arr[start] = arr[i]; start = i; i = 2*start+1; } arr[start] = temp; } /* 得到最小的k个数,保存在arr中的最后面k个位置 */ void MinHeapKNum(int *arr,int len,int k) { if(arr==NULL || len<1 || k<1 || k>len) return; int i; //把数组建成为小顶堆 //第一个非叶子节点的位置序号为(len-1)/2 for(i=(len-1)/2;i>=0;i--) HeapAdjustDown(arr,i,len-1); //进行堆排序 for(i=len-1;i>=len-k;i--) { //堆顶元素和最后一个元素交换位置。 //这样最后的一个位置保存的是最小的数, //每次循环依次将次小的数值在放进其前面一个位置。 int temp = arr[i]; arr[i] = arr[0]; arr[0] = temp; //将arr[0...i-1]又一次调整为小顶堆 HeapAdjustDown(arr,0,i-1); } } int main() { int n,k; while(scanf("%d %d",&n,&k) != EOF) { int *A = (int *)malloc(sizeof(int)*n); if(A == NULL) exit(EXIT_FAILURE); int i; for(i=0;i<n;i++) scanf("%d",A+i); MinHeapKNum(A,n,k); for(i=n-1;i>=n-k;i--) { //依据要求的格式输出 if(i == n-k) printf("%d\n",A[i]); else printf("%d ",A[i]); } } return 0; }
/**************************************************************
Problem: 1371
User: mmc_maodun
Language: C
Result: Accepted
Time:840 ms
Memory:8752 kb
****************************************************************/
4、还能够考虑採用大顶堆。但不是用数组的n个元素来建堆。而是用前k个数字来建立大顶堆。而后拿后面的后面的n-k个元素依次与大顶堆中的最大值(即堆顶)元素比較。假设小于该最大元素,则用该元素替换掉堆顶元素。并调整堆使其维持大顶堆的结构,假设大于该最大元素,则直接跳过,继续拿下一个数字与堆顶元素比較。等到全部的元素比較并操作完,这时数组中后面的元素都比该大顶堆中的数字要大。那么该大顶堆中的k各数字变为数组中最小的k个数字,且堆顶元素为这k个最小数组中最大的,因此它又是数组中第k小的数字。
该算法建立大顶堆须要的时间为O(k),每次调整堆须要的时间为O(logk)。而总共要调整n-k次。因此时间复杂度为
O(k+(n-k)logk),当k远远小于n时,时间复杂度可近似为O(nlogk)。另外,该算法非常适合海量数据处理,尤其在内存有限。不能一次读入全部的数据时。当n非常大,而k较小时,一次向内存读入k个数据。而后每次能够读入一个进行比較。这对于内存最多可容纳k个数据时便可满足要求。
5、也能够用数组保存k个数(事实上能够抽象为一个容器,容器选择的不同,对所需时间会有不同的影响),求其最大值。分别与后面的元素比較,利用与第4中方法相似的策略,最后该数组中个保存的便是最小的k个数字。这样的方法的时间复杂度为O(n*k)。
以上两种思路代码不再给出。
版权声明:本文博主原创文章,博客,未经同意不得转载。
标签:
原文地址:http://www.cnblogs.com/bhlsheji/p/4885523.html