标签:
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 50596 | Accepted: 19239 |
3 4 0
5 30
本题是约瑟夫环变形 先引入Joseph递推公式,设有n个人(0,...,n-1),数m,则第i轮出局的人为f(i)=(f(i-1)+m-1)%(n-i+1),f(0)=0;
f(i) 表示当前子序列中要退出的那个人(当前序列编号为0~(n-i));
拿个例子说:K=4,M=30;
f(0)=0;
f(1)=(f(0)+30-1)%8=5; 序列(0,1,2,3,4,5,6,7)中的5
f(2)=(f(1)+30-1)%7=6; 序列(0,1,2,3,4,6,7)中的7
f(3)=(f(2)+30-1)%6=5; 序列(0,1,2,3,4,6)中的6
f(4)=(f(3)+30-1)%5=4; 序列(0,1,2,3,4)中的4
假设当前剩下i个人(i<=n),显然这一轮m要挂(因为总是从1开始数).经过这一轮,剩下的人是:1 2 3 ... m- 1 m + 1 ... i, 我们将从m+1开始的数映射成1, 则m+2对应2, n对应i - m, 1对应成i - m + 1 m - 1对应i - 1,那么现在的问题变成了已知i - 1个人进行循环报数m,求出去的人的序号。假设已经求出了i- 1个人循环报数下最后一个出去的人的序号X0,那么它在n个人中的序号X1=(X0+ m - 1) % n + 1, 最初的X0=1 ,反复迭代X0和X1可以求出.
接下来说说m的取值范围:我们考察一下只剩下k+1个人时候情况,即坏人还有一个未被处决,那么在这一轮中结束位置必定在最后一个坏人,那么开始位置在哪呢?这就需要找K+2个人的结束位置,然而K+2个人的结束位置必定是第K+2个人或者第K+1个人,这样就出现两种顺序情况:GGGG.....GGGXB 或 GGGG......GGGBX (X表示有K+2个人的那一轮退出的人)所以有K+1个人的那一轮的开始位置有两种可能即第一个位置或K+1的那个位置,限定m有两种可能:t(k+1) 或 t(k+1)+1; t>=1; 若遍历每一个m必定超时,避免超时则需要打表和限制m的范围。
const Joseph:array [0..14] of longint=(0,2,7,5,30,169,441,1872,7632,1740,93313,459901,1358657,2504881,1245064); var x:longint; begin while true do begin readln(x); if x=0 then halt; writeln(Joseph[x]); end; end.
标签:
原文地址:http://www.cnblogs.com/yangqingli/p/4889494.html