标签:
题意:有两个一大一小的同心圆,圆心在原点,大圆外有一小圆,其圆心有一个速度(vx, vy),如果碰到了小圆会反弹,问该圆在大圆内运动的时间
分析:将圆外的小圆看成一个点,判断该直线与同心圆的交点,根据交点个数计算时间。用到了直线的定义,圆的定义,直线与圆交点的个数。
/************************************************ * Author :Running_Time * Created Time :2015/10/24 星期六 16:14:33 * File Name :C.cpp ************************************************/ #include <cstdio> #include <algorithm> #include <iostream> #include <sstream> #include <cstring> #include <cmath> #include <string> #include <vector> #include <queue> #include <deque> #include <stack> #include <list> #include <map> #include <set> #include <bitset> #include <cstdlib> #include <ctime> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 1e5 + 10; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; const double EPS = 1e-10; int dcmp(double x) { //三态函数,减少精度问题 if (fabs (x) < EPS) return 0; else return x < 0 ? -1 : 1; } struct Point { //点的定义 double x, y; Point (double x=0, double y=0) : x (x), y (y) {} Point operator + (const Point &r) const { //向量加法 return Point (x + r.x, y + r.y); } Point operator - (const Point &r) const { //向量减法 return Point (x - r.x, y - r.y); } Point operator * (double p) { //向量乘以标量 return Point (x * p, y * p); } Point operator / (double p) { //向量除以标量 return Point (x / p, y / p); } bool operator < (const Point &r) const { //点的坐标排序 return x < r.x || (x == r.x && y < r.y); } bool operator == (const Point &r) const { //判断同一个点 return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0; } }; typedef Point Vector; //向量的定义 Point read_point(void) { //点的读入 double x, y; scanf ("%lf%lf", &x, &y); return Point (x, y); } double polar_angle(Vector A) { //向量极角 return atan2 (A.y, A.x); } double dot(Vector A, Vector B) { //向量点积 return A.x * B.x + A.y * B.y; } double cross(Vector A, Vector B) { //向量叉积 return A.x * B.y - A.y * B.x; } double length(Vector A) { //向量长度,点积 return sqrt (dot (A, A)); } double angle(Vector A, Vector B) { //向量转角,逆时针,点积 return acos (dot (A, B) / length (A) / length (B)); } double area_triangle(Point a, Point b, Point c) { //三角形面积,叉积 return fabs (cross (b - a, c - a)) / 2.0; } Vector rotate(Vector A, double rad) { //向量旋转,逆时针 return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad)); } Vector nomal(Vector A) { //向量的单位法向量 double len = length (A); return Vector (-A.y / len, A.x / len); } Point point_inter(Point p, Vector V, Point q, Vector W) { //两直线交点,参数方程 Vector U = p - q; double t = cross (W, U) / cross (V, W); return p + V * t; } double dis_to_line(Point p, Point a, Point b) { //点到直线的距离,两点式 Vector V1 = b - a, V2 = p - a; return fabs (cross (V1, V2)) / length (V1); } double dis_to_seg(Point p, Point a, Point b) { //点到线段的距离,两点式 if (a == b) return length (p - a); Vector V1 = b - a, V2 = p - a, V3 = p - b; if (dcmp (dot (V1, V2)) < 0) return length (V2); else if (dcmp (dot (V1, V3)) > 0) return length (V3); else return fabs (cross (V1, V2)) / length (V1); } Point point_proj(Point p, Point a, Point b) { //点在直线上的投影,两点式 Vector V = b - a; return a + V * (dot (V, p - a) / dot (V, V)); } bool inter(Point a1, Point a2, Point b1, Point b2) { //判断线段相交,两点式 double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1), c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1); return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0; } bool on_seg(Point p, Point a1, Point a2) { //判断点在线段上,两点式 return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0; } double area_poly(Point *p, int n) { //多边形面积 double ret = 0; for (int i=1; i<n-1; ++i) { ret += fabs (cross (p[i] - p[0], p[i+1] - p[0])); } return ret / 2; } /* 点集凸包,输入点集会被修改 */ vector<Point> convex_hull(vector<Point> &P) { sort (P.begin (), P.end ()); P.erase (unique (P.begin (), P.end ()), P.end ()); //预处理,删除重复点 int n = P.size (), m = 0; vector<Point> ret (n + 1); for (int i=0; i<n; ++i) { while (m > 1 && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0) m--; ret[m++] = P[i]; } int k = m; for (int i=n-2; i>=0; --i) { while (m > k && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0) m--; ret[m++] = P[i]; } if (n > 1) m--; ret.resize (m); return ret; } struct Circle { Point c; double r; Circle () {} Circle (Point c, double r) : c (c), r (r) {} Point point(double a) { return Point (c.x + cos (a) * r, c.y + sin (a) * r); } }; struct Line { Point p; Vector v; double r; Line () {} Line (const Point &p, const Vector &v) : p (p), v (v) { r = polar_angle (v); } Point point(double a) { return p + v * a; } }; /* 直线相交求交点,返回交点个数,交点保存在P中 */ int line_cir_inter(Line L, Circle C, double &t1, double &t2, vector<Point> &P) { double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y; double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r; double delta = f * f - 4 * e * g; if (dcmp (delta) < 0) return 0; if (dcmp (delta) == 0) { t1 = t2 = -f / (2 * e); P.push_back (L.point (t1)); return -1; } t1 = (-f - sqrt (delta)) / (2 * e); P.push_back (L.point (t1)); t2 = (-f + sqrt (delta)) / (2 * e); P.push_back (L.point (t2)); if (dcmp (t1) < 0 || dcmp (t2) < 0) return 0; return 2; } /* 两圆相交求交点,返回交点个数。交点保存在P中 */ int cir_cir_inter(Circle C1, Circle C2, vector<Point> &P) { double d = length (C1.c - C2.c); if (dcmp (d) == 0) { if (dcmp (C1.r - C2.r) == 0) return -1; //两圆重叠 else return 0; } if (dcmp (C1.r + C2.r - d) < 0) return 0; if (dcmp (fabs (C1.r - C2.r) - d) < 0) return 0; double a = polar_angle (C2.c - C1.c); double da = acos ((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d)); //C1C2到C1P1的角? Point p1 = C1.point (a - da), p2 = C2.point (a + da); P.push_back (p1); if (p1 == p2) return 1; else P.push_back (p2); return 2; } int main(void) { Circle C1, C2; Point a, b; double Rm, R, r, x, y, vx, vy; while (scanf ("%lf%lf%lf%lf%lf%lf%lf", &Rm, &R, &r, &x, &y, &vx, &vy) == 7) { Rm += r; R += r; C1 = Circle (Point (0, 0), Rm); C2 = Circle (Point (0, 0), R); a = Point (x, y); b = Point (vx, vy); vector<Point> P1, P2; P1.clear (); P2.clear (); double t1, t2, t3, t4, ans, speed = sqrt (vx * vx + vy * vy); int num1 = line_cir_inter (Line (a, b), C1, t1, t2, P1); int num2 = line_cir_inter (Line (a, b), C2, t3, t4, P2); if (num2 == 2) { if (num1 == 2) { double len = length (P2[0] - P2[1]) - length (P1[0] - P1[1]); ans = len / speed; } else { ans = length (P2[0] - P2[1]) / speed; } } else { ans = 0.0; } printf ("%.4f\n", ans); } return 0; }
简单几何(直线与圆的交点) ZOJ Collision 3728
标签:
原文地址:http://www.cnblogs.com/Running-Time/p/4907417.html