标签:
1.高斯滤波
clear all;clc;close all %% 彩色to灰度 img=imread(‘Fig0631(a)(strawberries_coffee_full_color).jpg‘); gray=rgb2gray(img); %把彩色图片转化成灰度图片 figure(1),imshow(gray),title(‘彩色原始图像转灰色图像)‘); %显示原始图像 gray=imnoise(gray,‘gaussian‘,0,0.001); %加入均值为0,方差为0.001的高斯噪声 figure(2),imshow(gray),title(‘加入高斯噪声之后的图像‘); %显示加入高斯噪声之后的图像
%% 用matlab系统函数进行高斯滤波 sigma=0.5; %滤波器的标准值,单位为像素 hsize=[3 3]; %模板尺寸 gsseq=fspecial(‘gaussian‘,hsize,sigma); %生成高斯序列 Y1=filter2(gsseq,gray)/255; %用生成的高斯序列进行滤波 figure(3),imshow(Y1),title(‘用Matlab自带函数进行高斯滤波‘); %显示滤波后的图像
%% 用重新编写的程序进行高斯滤波 gray=double(gray); %将图像转为double型 gray=fft2(gray); %二维傅立叶变换 gray=fftshift(gray); %频谱居中 [m,n]=size(gray); %计算图像大小 d0=80; %D0=sigma,也就是标准差 m1=fix(m/2); %计算图像中心 n1=fix(n/2); %计算图像中心 for i=1:m for j=1:n d=sqrt((i-m1)^2+(j-n1)^2);%计算像素点到图像中心的距离 h(i,j)=exp(-d^2/2/d0^2); %高斯滤波器 end end g=gray.*h; %将图像进行高斯滤波,频域上表现为为两个函数相乘 g=ifftshift(g); %频域圆周移位 g=ifft2(g); %二维傅里叶反变换 g=mat2gray(real(g)); %归一化 figure(4),imshow(g),title(‘用重新编写的程序进行高斯滤波‘);%显示滤波后的图像
2.双边滤波
%双边滤波调用示例 I=imread(‘Fig0427(a)(woman).jpg‘); %读入图片 I=double(I)/255; %转为double型并归一化 w = 5; % 双边滤波器半宽,w越大平滑作用越强 sigma = [3 0.1]; % 空间距离方差σd记为SIGMA(1),像素亮度方差σr记为SIGMA(2),即空间邻近度因子和亮度相似度因子的衰减程度 I1=bfilter2(I,w,sigma); %双边滤波器滤波 figure(1),imshow(I),title(‘原始图像‘); %作出原始图像 figure(2),imshow(I1),title(‘双边滤波后的图像‘)%作出双边滤波后的图像
function B = bfltGray(A,w,sigma_d,sigma_r) % 计算距离因子权重 [X,Y] = meshgrid(-w:w,-w:w); %创建核距离矩阵 %e.g. %[x,y]=meshgrid(-1:1,-1:1) % % x = % % -1 0 1 % -1 0 1 % -1 0 1 % % % y = % % -1 -1 -1 % 0 0 0 % 1 1 1 %计算定义域核 G = exp(-(X.^2+Y.^2)/(2*sigma_d^2)); %创建进度条 h = waitbar(0,‘Applying bilateral filter...‘); set(h,‘Name‘,‘Bilateral Filter Progress‘); % 应用双边滤波 %计算值域核H 并与定义域核G 乘积得到双边权重函数F dim = size(A); B = zeros(dim); for i = 1:dim(1) for j = 1:dim(2) %边界限制 iMin = max(i-w,1); iMax = min(i+w,dim(1)); jMin = max(j-w,1); jMax = min(j+w,dim(2)); %定义当前核所作用的区域为(iMin:iMax,jMin:jMax) I = A(iMin:iMax,jMin:jMax);%提取该区域的源图像值赋给I % 计算亮度因子权重 H = exp(-(I-A(i,j)).^2/(2*sigma_r^2)); % 计算双边滤波结果 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1); B(i,j) = sum(F(:).*I(:))/sum(F(:)); end waitbar(i/dim(1)); end % 结束进度条 close(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 对彩色图像进行双边滤波操作 function B = bfltColor(A,w,sigma_d,sigma_r) % 将sRGB转换为CIELab色彩空间 if exist(‘applycform‘,‘file‘) A = applycform(A,makecform(‘srgb2lab‘)); else A = colorspace(‘Lab<-RGB‘,A); end % 计算空间距离因子权重 [X,Y] = meshgrid(-w:w,-w:w); G = exp(-(X.^2+Y.^2)/(2*sigma_d^2)); % 调整亮度因子权重 sigma_r = 100*sigma_r; % 创建进度条 h = waitbar(0,‘Applying bilateral filter...‘); set(h,‘Name‘,‘Bilateral Filter Progress‘); % 应用双边滤波 dim = size(A); B = zeros(dim); for i = 1:dim(1) for j = 1:dim(2) % 边界限制 iMin = max(i-w,1); iMax = min(i+w,dim(1)); jMin = max(j-w,1); jMax = min(j+w,dim(2)); I = A(iMin:iMax,jMin:jMax,:); % 计算亮度因子权重 dL = I(:,:,1)-A(i,j,1); da = I(:,:,2)-A(i,j,2); db = I(:,:,3)-A(i,j,3); H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2)); % 计算双边滤波结果 F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1); norm_F = sum(F(:)); B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F; B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F; B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F; end waitbar(i/dim(1)); end % 将图像转换为sRGB色彩空间. if exist(‘applycform‘,‘file‘) B = applycform(B,makecform(‘lab2srgb‘)); else B = colorspace(‘RGB<-Lab‘,B); end % 结束进度条 close(h);
%A为给定图像,归一化到[0,1]的矩阵 %w为双边滤波器(核)的边长/2 %定义域方差σd记为SIGMA(1),值域方差σr记为SIGMA(2) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function B = bfilter2(A,w,sigma) % 检验给定图像是否存在并且有效 if ~exist(‘A‘,‘var‘) || isempty(A) error(‘Input image A is undefined or invalid.‘); end if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ... min(A(:)) < 0 || max(A(:)) > 1 error([‘Input image A must be a double precision ‘,... ‘matrix of size NxMx1 or NxMx3 on the closed ‘,... ‘interval [0,1].‘]); end % 检验双边滤波器的半宽是否符合要求 if ~exist(‘w‘,‘var‘) || isempty(w) || ... numel(w) ~= 1 || w < 1 w = 5; end w = ceil(w); % 检验sigma参数是否符合要求 if ~exist(‘sigma‘,‘var‘) || isempty(sigma) || ... numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0 sigma = [3 0.1]; end %选择彩色模式或灰度模式 if size(A,3) == 1 B = bfltGray(A,w,sigma(1),sigma(2)); else B = bfltColor(A,w,sigma(1),sigma(2)); end
标签:
原文地址:http://www.cnblogs.com/pursuit1996/p/4912189.html