码迷,mamicode.com
首页 > 其他好文 > 详细

矩阵快速幂——将运算推广到矩阵上HDU 1575

时间:2014-07-18 18:24:07      阅读:295      评论:0      收藏:0      [点我收藏+]

标签:io   for   问题   re   c   new   

/*

本题的思路比较简单,就是将递推公式写出来,然后表达成为一个矩阵的形式

最后通过计算就可以得到一个符合题目要求的矩阵,

然后就是将矩阵上面所有的对角线元素相加

得到的结果即为所求的目标

*/

#include<cstdio> 
#include<cstring> 
using namespace std; 
const int maxn = 15; 
#define mod 9973 
int res[maxn][maxn]; 
int n; 
void mul(int a[][15],int b[][15],int c[][15]){ 
    int temp[15][15];  memset(temp,0,sizeof(temp)); 
    for(int i=0;i<n;i++) 
      for(int j=0;j<n;j++) 
        for(int k=0;k<n;k++){
           temp[i][j]=(temp[i][j]+ a[i][k]*b[k][j] )%mod; 
        } 
    memcpy(c,temp,sizeof(temp)); 
}
void pow(int a[][15],int k){ 
     while(k){ 
         if(k&1){ 
             mul(res,a,res); 
         } 
         mul(a,a,a); 
         k>>=1; 
     //    printf("%d\n",k); 
     } 

int main(){ 
    int T,k; 
    int a[maxn][maxn]; 
    scanf("%d",&T); 
    while(T--){ 
        scanf("%d%d",&n,&k); 
        for(int i=0;i<n;i++)  for(int j=0;j<n;j++)  res[i][j]=(i==j); 
        //这个做法主要是将对角线标记出来,然后就可以与矩阵a相乘,最后得到的a矩阵就是一个对角矩阵
        for(int i=0;i<n;i++)  for(int j=0;j<n;j++)  scanf("%d",&a[i][j]); 
        pow(a,k); 
        int ans=0; 
        for(int i=0;i<n;i++) ans+=res[i][i]; 
        printf("%d\n",ans%mod); 
    } 
    return 0; 

//自己现在最大的问题就是知道矩阵相乘的方法,但是将一个数组的问题处理好就没办法了……

////////////////////////////////////////////////////////////////////////////////////////////////////////////

矩阵方面的问题处理参考方式

矩阵乘法
struct Matrix{
    long long mat[N][N];
    Matrix operator*(const Matrix m)const{
        Matrix tmp;
        for(int i = 0;i < n;i++){
            for(int j = 0;j < n;j++){
                tmp.mat[i][j] = 0;//完成初始化
                for(int k = 0;k < n;k++){
                    tmp.mat[i][j] += mat[i][k]*m.mat[k][j]%MOD;
                    tmp.mat[i][j] %= MOD;
                }}}
        return tmp;
//这个是通过new一个空间后达到目的的,所以后面会有空间的保留,可以通过这种方式将数组传递下来
    }
};

矩阵快速幂——将运算推广到矩阵上HDU 1575,布布扣,bubuko.com

矩阵快速幂——将运算推广到矩阵上HDU 1575

标签:io   for   问题   re   c   new   

原文地址:http://www.cnblogs.com/tianxia2s/p/3853444.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!