码迷,mamicode.com
首页 > 其他好文 > 详细

Matlab boxplot for Multiple Groups(多组数据的箱线图)

时间:2015-10-27 21:45:48      阅读:1751      评论:0      收藏:0      [点我收藏+]

标签:

在画之前首先介绍一下Matlab boxplot下面这段说明内容来自http://www.plob.org/2012/06/10/2153.html
 

由于matlab具有强大的计算功能,用其统计数据功能优点显而易见,这里分享使用matlab中的boxplot的一些技巧,供大家参考。

Matlab boxplot命令

格式如下

boxplot(X)产生矩阵X的每一列的盒图和“须”图,“须”是从盒的尾部延伸出来,并表示盒外数据长度的线,如果“须”的外面没有数据,则在“须”的底部有一个点。 www.iLoveMatlab.cn

boxplot(X,notch)当notch=1时,产生一凹盒图,notch=0时产生一矩箱图。

boxplot(X,notch,‘sym‘)sym表示图形符号,默认值为“+”。

boxplot(X,notch,‘sym‘,vert) %当vert=0时,生成水平盒图,vert=1时,生成竖直盒图(默认值vert=1)。 Matlab中文论坛

boxplot(X,notch,‘sym‘,vert,whis) %whis定义“须”图的长度,默认值为1.5,若whis=0则boxplot函数通过绘制sym符号图来显示盒外的所有数据值。

箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。

画图步骤:

1、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。

2、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q1和Q3)。在矩形盒内部中位数(Xm)位置画一条线段为中位线。

3、在Q3+1.5IQR(四分位距)和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在F+3IQR和F-3IQR处画两条线段,称其为外限。处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。

4、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。

5、用“〇”标出温和的异常值,用“*”标出极端的异常值。相同值的数据点并列标出在同一数据
线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱线图便绘出了。统计软件绘制的箱线图一般没有标出内限和外限。:

例子1:

clear

x1=[1,2,2,3,5,3];

x2=[2,5,4,5,8,6];

g1={x1,x2};

%group2

x3=[2,8,9,2,1,6];

x4=[5,4,3,22,11,6];

g2={x3,x4};

%group3

x5=[10,12,22,4];

x6=[12,15,4,25];

g3={x5,x6};

G=cat(1,g1,g2,g3); 

class={1,2,3}

positions = [1 1.25 2 2.25 3 3.25];

boxplot(G,class, ‘positions‘, positions);

set(gca,‘xtick‘,[mean(positions(1:2)) mean(positions(3:4)) mean(positions(5:6)) ])

set(gca,‘xticklabel‘,{‘Group1‘,‘Group2‘,‘Group3‘})

color = [‘c‘, ‘y‘, ‘c‘, ‘y‘];

h = findobj(gca,‘Tag‘,‘Box‘);

for j=1:length(h)

   patch(get(h(j),‘XData‘),get(h(j),‘YData‘),color(j),‘FaceAlpha‘,.5);

end

c = get(gca, ‘Children‘);

hleg1 = legend(c(1:2), ‘Feature1‘, ‘Feature2‘ );

  

 

 

例2: 

技术分享

数据:BoxPlotData.mat,包含X4058_300和X4058_400两个变量数据

X4058_300=[
0.6010 0.6847 0.6798 0.6700 0.6059 0.6749 0.6453 0.6502 0.6847 0.6700 0.5813 0.6404 0.6749 0.6749 0.6650 0.6502 0.6749 0.6305 0.6355 0.7143; 
0.6207 0.6650 0.6847 0.6749 0.5961 0.6601 0.6404 0.6700 0.6946 0.6897 0.6059 0.6749 0.6650 0.6749 0.6453 0.6502 0.6700 0.6256 0.6256 0.6995 ;
0.6601 0.6700 0.7340 0.7044 0.6355 0.7241 0.6798 0.6897 0.7094 0.6946 0.6256 0.6798 0.7044 0.7389 0.6700 0.6749 0.7143 0.6650 0.6059 0.6502; 
0.7291 0.6108 0.7192 0.7537 0.5862 0.6355 0.6010 0.7143 0.6946 0.6897 0.6453 0.7685 0.7635 0.6404 0.7094 0.7143 0.6108 0.6552 0.7389 0.6897;
0.7044 0.7044 0.7044 0.6847 0.7143 0.6700 0.6650 0.7438 0.7143 0.7143 0.6601 0.6502 0.6995 0.7586 0.7488 0.6897 0.6700 0.6946 0.6897 0.6897; 
0.6355 0.6847 0.7291 0.7143 0.6700 0.7438 0.6700 0.6650 0.7192 0.7044 0.6355 0.6847 0.6749 0.7094 0.6798 0.6453 0.7241 0.6946 0.6108 0.6700 ]

 

X4058_400 =[
0.5922 0.6408 0.6408 0.5825 0.6505 0.6796 0.6214 0.6796 0.6311 0.6505 0.5825 0.6699 0.6602 0.6602 0.7282 0.6602 0.6699 0.7087 0.6505 0.6505 ;
0.6117 0.6311 0.6602 0.6117 0.6505 0.6796 0.6214 0.6990 0.6990 0.6311 0.5922 0.6796 0.6699 0.6408 0.7184 0.6505 0.6602 0.7087 0.6214 0.6796; 
0.6311 0.7184 0.7573 0.6893 0.6311 0.6990 0.6408 0.7087 0.7379 0.6990 0.6699 0.7184 0.6699 0.6699 0.7184 0.6893 0.6699 0.6990 0.6214 0.6990; 
0.6602 0.6311 0.7379 0.6408 0.5922 0.7282 0.5728 0.7087 0.7379 0.7379 0.5728 0.7767 0.7476 0.6214 0.7476 0.6214 0.7379 0.6893 0.6019 0.6699 ;
0.6214 0.7476 0.6311 0.6699 0.6699 0.6311 0.6214 0.6699 0.6796 0.6505 0.5922 0.6796 0.7184 0.6893 0.8058 0.6699 0.6602 0.7184 0.6796 0.6796 ;
0.6117 0.6893 0.7282 0.6602 0.7573 0.7379 0.6408 0.7184 0.7087 0.7087 0.6990 0.6796 0.6214 0.6311 0.7573 0.6602 0.7379 0.6796 0.6796 0.7282 ;]

  

 

Matlab程序:

clear

load BoxPlotData

x01=X4058_300;
x02=X4058_400;

x1 = [x01(1,:);x02(1,:)]‘;
x2 = [x01(2,:);x02(2,:)]‘;
x3 = [x01(3,:);x02(3,:)]‘;
x4 = [x01(4,:);x02(4,:)]‘;
x5 = [x01(5,:);x02(5,:)]‘;
x6 = [x01(6,:);x02(6,:)]‘;
f=figure(1)
x = [x1;x2;x3;x4;x5;x6]; x = x(:);
g1 = [ones(size(x1)); 2*ones(size(x2)); 3*ones(size(x3));4*ones(size(x4));...
    5*ones(size(x5));6*ones(size(x6));]; g1 = g1(:);
g2 = repmat(1:2,120,1); g2 = g2(:);
positions = [[1:6],[7:12]];
bh=boxplot(x, {g2,g1},‘notch‘,‘on‘,‘whisker‘,1,‘colorgroup‘,g1, ‘factorgap‘,[8 1],‘symbol‘,‘.‘,‘outliersize‘,4,‘widths‘,0.6,‘positions‘,positions)
xlabel(‘Training data size‘);
ylabel(‘Mean zero-one error‘)
grid on
set(gca,‘YLim‘,[0.45,0.85],‘gridLineStyle‘, ‘-.‘);

set(bh,‘linewidth‘,1.2);

color = [‘c‘, ‘y‘, ‘g‘, ‘b‘,‘o‘, ‘b‘,‘c‘, ‘y‘, ‘g‘, ‘b‘,‘o‘, ‘b‘];
h = findobj(gca,‘Tag‘,‘Box‘);
mk=findobj(gca,‘tag‘,‘Outliers‘); % Get handles for outlier lines.
set(mk,‘Marker‘,‘o‘); % Change symbols for all the groups.
 for j=1:length(h)/2
    patch(get(h(j),‘XData‘),get(h(j),‘YData‘),color(4),‘FaceAlpha‘,0.01*j);
 end
  for j=(length(h)/2+1):length(h)
    patch(get(h(j),‘XData‘),get(h(j),‘YData‘),color(4),‘FaceAlpha‘,0.01*(j-length(h)/2));
 end

set(gca,‘xtick‘,[7.5])
% set(gca,‘xtick‘,[]);
set(gca,‘XTickLabel‘,{‘ ‘})
 
% Create textbox
annotation(f,‘textbox‘,...
    [0.3 0.075 0.035 0.075],...
    ‘String‘,{‘300‘},...
    ‘FitBoxToText‘,‘off‘,...
    ‘EdgeColor‘,‘none‘);

% Create textbox
annotation(f,‘textbox‘,...
    [0.7 0.075 0.035 0.075],...
    ‘String‘,‘400‘,...
    ‘FitBoxToText‘,‘off‘,...
    ‘EdgeColor‘,‘none‘);

  

 

Matlab boxplot for Multiple Groups(多组数据的箱线图)

标签:

原文地址:http://www.cnblogs.com/huadongw/p/4915469.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!