码迷,mamicode.com
首页 > 其他好文 > 详细

棋盘覆盖问题(算法竞赛入门经典)

时间:2014-07-19 18:00:10      阅读:283      评论:0      收藏:0      [点我收藏+]

标签:blog   http   使用   os   width   io   

在一个 2^k * 2^k 个方格组成的棋盘中,若恰有一个方格与其它方格不同,则称该方格为一特殊方格,称该棋盘为一特殊棋盘。显然特殊方格在棋盘上出现的位置有 4^k 种情形。因而对任何 k>=0 ,有 4^k 种不同的特殊棋盘。下图所示的特殊棋盘为 k=2 时 16 个特殊棋盘中的一个。

bubuko.com,布布扣

在棋盘覆盖问题中,要用下图中 4 中不同形态的 L 型骨牌覆盖一个给定的特殊棋牌上除特殊方格以外的所有方格,且任何 2 个 L 型骨牌不得重叠覆盖。易知,在任何一个 2^k * 2^k 的棋盘中,用到的 L 型骨牌个数恰为 (4^k-1)/3 。

bubuko.com,布布扣

用分治策略,可以设计解棋盘问题的一个简捷的算法。
当 k>0 时,将 2^k * 2^k 棋盘分割为 4 个 2^(k-1) * 2^(k-1) 子棋盘,如下图所示。

bubuko.com,布布扣

特殊方格必位于 4 个较小子棋盘之一中,其余 3 个子棋盘中无特殊方格。为了将这 3 个无特殊方格的子棋盘转化为特殊棋盘,我们可以用一个 L 型骨牌覆盖这 3 个较小的棋盘的汇合处,如下图所示,这 3 个子棋盘上被 L 型骨牌覆盖的方格就成为该棋盘上的特殊方格,从而将原问题化为 4 个较小规模的棋盘覆盖问题。递归的使用 这种分割,直至棋盘简化为 1x1 棋盘。

bubuko.com,布布扣

下面给出代码:

 1 #include<iostream>
 2 #include<string.h>
 3 using namespace std;
 4 int tile=1;                   //L型骨牌的编号(递增)
 5 int board[100][100];  //棋盘
 6 /*****************************************************
 7 * 递归方式实现棋盘覆盖算法
 8 * 输入参数:
 9 * tr--当前棋盘左上角的行号
10 * tc--当前棋盘左上角的列号
11 * dr--当前特殊方格所在的行号
12 * dc--当前特殊方格所在的列号
13 * size:当前棋盘的:2^k
14 *****************************************************/
15 void chessBoard ( int tr, int tc, int dr, int dc, int size )
16 {
17     if ( size==1 )    //棋盘方格大小为1,说明递归到最里层
18         return;
19     int t=tile++;     //每次递增1
20     int s=size/2;    //棋盘中间的行、列号(相等的)
21     //检查特殊方块是否在左上角子棋盘中
22     if ( dr<tr+s && dc<tc+s )              //在
23         chessBoard ( tr, tc, dr, dc, s );
24     else         //不在,将该子棋盘右下角的方块视为特殊方块
25     {
26         board[tr+s-1][tc+s-1]=t;
27         chessBoard ( tr, tc, tr+s-1, tc+s-1, s );
28     }
29     //检查特殊方块是否在右上角子棋盘中
30     if ( dr<tr+s && dc>=tc+s )               //在
31         chessBoard ( tr, tc+s, dr, dc, s );
32     else          //不在,将该子棋盘左下角的方块视为特殊方块
33     {
34         board[tr+s-1][tc+s]=t;
35         chessBoard ( tr, tc+s, tr+s-1, tc+s, s );
36     }
37     //检查特殊方块是否在左下角子棋盘中
38     if ( dr>=tr+s && dc<tc+s )              //在
39         chessBoard ( tr+s, tc, dr, dc, s );
40     else            //不在,将该子棋盘右上角的方块视为特殊方块
41     {
42         board[tr+s][tc+s-1]=t;
43         chessBoard ( tr+s, tc, tr+s, tc+s-1, s );
44     }
45     //检查特殊方块是否在右下角子棋盘中
46     if ( dr>=tr+s && dc>=tc+s )                //在
47         chessBoard ( tr+s, tc+s, dr, dc, s );
48     else         //不在,将该子棋盘左上角的方块视为特殊方块
49     {
50         board[tr+s][tc+s]=t;
51         chessBoard ( tr+s, tc+s, tr+s, tc+s, s );
52     }
53 }
54 
55 int main()
56 {
57     int size;
58     memset(board,0,sizeof(board));
59     cout<<"输入棋盘的size(大小必须是2的n次幂): ";
60     cin>>size;
61     int index_x,index_y;
62     cout<<"输入特殊方格位置的坐标: ";
63     cin>>index_x>>index_y;
64     cout<<board[index_x][index_y]<<endl;
65     chessBoard ( 0,0,index_x,index_y,size );
66     for ( int i=0; i<size; i++ )
67     {
68         for ( int j=0; j<size; j++ )
69             cout<<board[i][j]<<‘ ‘;
70         cout<<endl;
71     }
72     return 0;
73 }

 

棋盘覆盖问题(算法竞赛入门经典),布布扣,bubuko.com

棋盘覆盖问题(算法竞赛入门经典)

标签:blog   http   使用   os   width   io   

原文地址:http://www.cnblogs.com/khbcsu/p/3853676.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!