标签:
题意:两条线段看成两块木板,雨水从上方往下垂直落下,问能接受到的水的体积
分析:恶心的分类讨论题,考虑各种情况,尤其是入口被堵住的情况,我的方法是先判断最高的两个点是否在交点的同一侧,然后看看是否高的点覆盖了低的点,用叉积判断方向,其他的情况见网上的解释。貌似没有什么卡精度的数据。最后膜拜楼教主,难以望其项背。。。
/************************************************ * Author :Running_Time * Created Time :2015/10/30 星期五 18:36:27 * File Name :POJ_2826.cpp ************************************************/ #include <cstdio> #include <algorithm> #include <iostream> #include <sstream> #include <cstring> #include <cmath> #include <string> #include <vector> #include <queue> #include <deque> #include <stack> #include <list> #include <map> #include <set> #include <bitset> #include <cstdlib> #include <ctime> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 1e5 + 10; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; const double EPS = 1e-10; const double PI = acos (-1.0); int dcmp(double x) { if (fabs (x) < EPS) return 0; else return x < 0 ? -1 : 1; } struct Point { double x, y; Point () {} Point (double x, double y) : x (x), y (y) {} Point operator + (const Point &r) const { return Point (x + r.x, y + r.y); } Point operator - (const Point &r) const { return Point (x - r.x, y - r.y); } Point operator * (double p) const { return Point (x * p, y * p); } Point operator / (double p) const { return Point (x / p, y / p); } bool operator < (const Point &r) const { return x < r.x || (!dcmp (x - r.x) && y < r.y); } bool operator == (const Point &r) const { return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0; } }; typedef Point Vector; Point read_point(void) { double x, y; scanf ("%lf%lf", &x, &y); return Point (x, y); } double dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; } double cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } Point line_line_inter(Point p, Vector V, Point q, Vector W) { Vector U = p - q; double t = cross (W, U) / cross (V, W); return p + V * t; } bool can_inter(Point a1, Point a2, Point b1, Point b2) { double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1), c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1); return dcmp (c1) * dcmp (c2) <= 0 && dcmp (c3 * c4) <= 0; } double area_triangle(Point a, Point b, Point c) { return fabs (cross (b - a, c - a)) / 2.0; } int main(void) { int T; scanf ("%d", &T); Point a1, a2, b1, b2; while (T--) { a1 = read_point (); a2 = read_point (); b1 = read_point (); b2 = read_point (); //a1,b1是纵坐标较高的点 if (dcmp (a1.y - a2.y) < 0 || (dcmp (a1.y - a2.y) == 0 && dcmp (a1.x - a2.x) > 0)) swap (a1, a2); if (dcmp (b1.y - b2.y) < 0 || (dcmp (b1.y - b2.y) == 0 && dcmp (b1.x - b2.x) > 0)) swap (b1, b2); if (dcmp (a1.x - a2.x) == 0 && dcmp (b1.x - b2.x) == 0) { //竖直平行 puts ("0.00"); continue; } if (dcmp (a1.y - a2.y) == 0 || dcmp (b1.y - b2.y) == 0) { //水平平行 puts ("0.00"); continue; } if (dcmp (cross (a1 - a2, b1 - b2)) == 0) { //共线 puts ("0.00"); continue; } if (!can_inter (a1, a2, b1, b2)) { //不能相交 puts ("0.00"); continue; } Point p = line_line_inter (a1, a2 - a1, b1, b2 - b1), q; if (dcmp (a1.y - p.y) <= 0 || dcmp (b1.y - p.y) <= 0) { //有一个点纵坐标低于交点 puts ("0.00"); continue; } double ans = 0.0; if (dcmp (a1.y - b1.y) == 0) { ans = area_triangle (a1, b1, p); } else if (dcmp (a1.y - b1.y) < 0) { if (dcmp (a1.x - p.x) > 0 && dcmp (b1.x - p.x) > 0) { if (dcmp (b1.x - a1.x) >= 0 && cross (a1 - p, b1 - p) >= 0) { //入口被覆盖,以下同 puts ("0.00"); continue; } } else if (dcmp (a1.x - p.x) < 0 && dcmp (b1.x - p.x) < 0) { if (dcmp (b1.x - a1.x) <= 0 && cross (b1 - p, a1 - p) >= 0) { puts ("0.00"); continue; } } q = line_line_inter (a1, Vector (1, 0), b1, b2 - b1); ans = area_triangle (a1, q, p); } else { if (dcmp (a1.x - p.x) > 0 && dcmp (b1.x - p.x) > 0) { if (dcmp (a1.x - b1.x) >= 0 && cross (b1 - p, a1 - p) >= 0) { puts ("0.00"); continue; } } else if (dcmp (a1.x - p.x) < 0 && dcmp (b1.x - p.x) < 0) { if (dcmp (a1.x - b1.x) <= 0 && cross (a1 - p, b1 - p) >= 0) { puts ("0.00"); continue; } } q = line_line_inter (a1, a2 - a1, b1, Vector (1, 0)); ans = area_triangle (b1, q, p); } double eps = 1e-8; printf ("%.2f\n", ans + eps); } //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n"; return 0; }
简单几何(线段相交) POJ 2826 An Easy Problem?!
标签:
原文地址:http://www.cnblogs.com/Running-Time/p/4925016.html