标签:
#include <iostream> //#include <stdio.h> #include <fstream> #include <iomanip> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> //#include <opencv2/ml/ml.hpp> //#include <opencv2/features2d/features2d.hpp> //#include <opencv2/objdetect.hpp> //#include <opencv2/gpu/gpu.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/objdetect/objdetect.hpp> #include <opencv2/xobjdetect/xobjdetect.hpp> using namespace std; using namespace cv; //FeatureEvaluator int main() { /************************************************************************************ 参数设置 *************************************************************************************/ //some parameters: int positive_num = 1000; int negative_num = 9000; vector<String> v_positive_img; vector<String> v_negative_img; //先考虑训练0 int test_char = 0; //正例、负例 string all_class_path = "C:\\Users\\cong\\Desktop\\研一实战\\项目\\图像中时间数字识别\\OCR\\result\\"; string img_txt; for (int i = 0; i < 10; i++) { //数字转字符 stringstream ss; ss << i; string test_char_str = ss.str(); img_txt = all_class_path + "result" + test_char_str + ".txt"; string path; ifstream finPos(img_txt); if (test_char == i) { //vector<Mat> channels; //用来装一幅图的N个通道;还没初始化 getline(finPos, path); //应该把文件中的图片个数也记录下来,由于该次的数据集,0~9个数一样,因此,可以考虑先不这么做 int img_num = 0; //把path,第一行字符变成数字,还没有完成 for (int j = 0; j<positive_num && getline(finPos, path); j++) { v_positive_img.push_back(path); //cout << path<<endl; } } else { //vector<Mat> channels; //用来装一幅图的N个通道;还没初始化 getline(finPos, path); //应该把文件中的图片个数也记录下来,由于该次的数据集,0~9个数一样,因此,可以考虑先不这么做 int img_num = 0; //把path,第一行字符变成数字,还没有完成 for (int j = 0; j<negative_num && getline(finPos, path); j++) { v_negative_img.push_back(path); //cout << path << endl; } } } //训练:随机森林 //上述中正负样本的个数是否需要调整? cv::xobjdetect::ICFDetectorParams myICFDetctorParams; cv::xobjdetect::ICFDetector myICFDetector; myICFDetector.train(v_positive_img, v_negative_img, myICFDetctorParams); //测试,尺度问题呢? //parameters //Mat img_test = imread("C:\\Users\\cong\\Desktop\\研一实战\\项目\\图像中时间数字识别\\OCR\\one\\3.jpg"); //vector<Rect> myRect; //float scaleFactor; //Size minSize; //Size maxSize; //float threshold; //int slidingStep; //vector<float> values; //myICFDetector.detect(img_test, myRect, scaleFactor, 10, 50, threshold, slidingStep, values); /* C++: void ICFDetector::detect(const Mat& image, vector<Rect>& objects, float scaleFactor, Size minSize, Size maxSize, float threshold, int slidingStep, std::vector<float>& values) C++: detect(const Mat& img, std::vector<Rect>& objects, float minScaleFactor, float maxScaleFactor, float factorStep, float threshold, int slidingStep, std::vector<float>& values) Parameters: image – image for detection objects – output array of bounding boxes scaleFactor – scale between layers in detection pyramid minSize – min size of objects in pixels maxSize – max size of objects in pixels minScaleFactor – min factor by which the image will be resized maxScaleFactor – max factor by which the image will be resized factorStep – scaling factor is incremented each pyramid layer according to this parameter slidingStep – sliding window step values – output vector with values of positive samples */ return 0; }
标签:
原文地址:http://www.cnblogs.com/Wanggcong/p/4929595.html