标签:
这节主要是练习下PCA,PCA Whitening以及ZCA Whitening在2D数据上的使用,2D的数据集是45个数据点,每个数据点是2维的。
一些matlab函数
彩色分散点图函数:scatter(x,y,c,s) x, y为两个矢量,用于定位数据点,s为绘图点的大小,c为绘图所使用的色彩,s和c均可以以矢量或表达式形式给出,s和c为与x或y同长度的矢量时标记点尺 寸和颜色将按线性规律变化。在 scatter函数的前4各参数之后还可以增加第五个参数‘ filled‘,表示填充绘图点。Scatter与plot 的最大差别在于Scatter可以绘制变尺寸、变颜色的点图。
例:给定数据t=0:pi/10:2*pi, y=sin(t),观察在不同输入参数时函数的绘图结果。
t=0:pi/10:2*pi; y=sin(t)
subplot(3,2,1); scatter(t,y)
subplot(3,2,2); scatter(t,y,‘v‘)
subplot(3,2,3); scatter(t,y,(abs(y)+2).^4,‘filled‘)
subplot(3,2,4); scatter(t,y,30,[0:2: 40],‘v‘,‘filled‘)
subplot(3,2,5); scatter(t,y,(t+1).^3,y,‘filled‘)
diag函数功能:矩阵对角元素的提取和创建对角阵
设以下X为方阵,v为向量
1、X = diag(v,k)当v是一个含有n个元素的向量时,返回一个n+abs(k)阶方阵X,向量v在矩阵X中的第k个对角线上,k=0表示主对角线,k>0表示在主对角线上方,k<0表示在主对角线下方。例1:
v=[1 2 3];
diag(v, 3)
ans =
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
注:从主对角矩阵上方的第三个位置开始按对角线方向产生数据的
例2:
v=[1 2 3];
diag(v, -1)
ans =
0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0
注:从主对角矩阵下方的第一个位置开始按对角线方向产生数据的
2、X = diag(v)
向量v在方阵X的主对角线上,类似于diag(v,k),k=0的情况。
例3:
v=[1 2 3];
diag(v)
ans =
1 0 0
0 2 0
0 0 3
注:写成了对角矩阵的形式
3、v = diag(X,k)
返回列向量v,v由矩阵X的第k个对角线上的元素形成
例4:
v=[1 0 3;2 3 1;4 5 3];
diag(v,1)
ans =
0
1
注:把主对角线上方的第一个数据作为起始数据,按对角线顺序取出写成列向量形式
4、v = diag(X)返回矩阵X的主对角线上的元素,类似于diag(X,k),k=0的情况例5:
v=[1 0 0;0 3 0;0 0 3];
diag(v)
ans =
1
3
3
或改为:
v=[1 0 3;2 3 1;4 5 3];
diag(v)
ans =
1
3
3
注:把主对角线的数据取出写成列向量形式
5、diag(diag(X))
取出X矩阵的对角元,然后构建一个以X对角元为对角的对角矩阵。
例6:
X=[1 2;3 4]
diag(diag(X))
X =
1 2
3 4
ans =
1 0
0 4
Deep Learning三:PCA in 2D_Exercise(斯坦福大学UFLDL深度学习教程)
标签:
原文地址:http://www.cnblogs.com/dmzhuo/p/4923204.html