码迷,mamicode.com
首页 > 其他好文 > 详细

LightOJ 1282 Leading and Trailing (快数幂 + 数学)

时间:2015-11-03 13:49:36      阅读:244      评论:0      收藏:0      [点我收藏+]

标签:

http://lightoj.com/volume_showproblem.php?problem=1282

Leading and Trailing
Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.

Input

Input starts with an integer T (≤ 1000), denoting the number of test cases.

Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).

Output

For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.

Sample Input

5

123456 1

123456 2

2 31

2 32

29 8751919

Sample Output

Case 1: 123 456

Case 2: 152 936

Case 3: 214 648

Case 4: 429 296

Case 5: 665 669

 

题目大意:给两个数n、k,让求n^k的前三位和后三位

 

分析:

 

后三位直接用快数幂取余可以求出

前三位我们可以将n^k转化成a.bc * 10^m,这样abc就是前三位了,n^k =  a.bc * 10^m

即lg(n^k) = lg(a.bc * 10^m)

<==>k * lg(n) = lg(a.bc) + lg(10^m) = lg(a.bc) + m

m为k * lg(n)的整数部分,lg(a.bc)为k * lg(n)的小数部分

x = lg(a.bc) = k * lg(n) - m = k * lg(n) - (int)(k * lg(n))

a.bc = pow(10, x);

abc = a.bc * 100;

这样前三位数abc便可以求出

 

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>

using namespace std;
typedef long long ll;

int Pow(int a, int b)
{
    int ans = 1;
    a %= 1000;
    while(b)
    {
        if(b % 2 != 0)
            ans = (ans * a) % 1000;
        a = (a * a) % 1000;
        b /= 2;
    }
    return ans;
}//快数幂

int main()
{
    int t, n, k, p = 0;
    scanf("%d", &t);
    while(t--)
    {
        p++;
        scanf("%d%d", &n, &k);
        double m = k * log10(n) - (int)(k * log10(n));
        m = pow(10, m);
        int x = m * 100;
        int y = Pow(n, k);
        printf("Case %d: %d %03d\n", p, x, y);
    }
    return 0;
}

 

LightOJ 1282 Leading and Trailing (快数幂 + 数学)

标签:

原文地址:http://www.cnblogs.com/qq2424260747/p/4932958.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!