标签:
线性回归
回归就是对已知公式的未知参数进行估计。比如已知公式是y=a∗x+b,未知参数是a和b,利用多真实的(x,y)训练数据对a和b的取值去自动估计。估计的方法是在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值,直到找到那个最符合样本点分布的参数(或参数组合)。也就是给定训练样本,拟合参数的过程,对y= a*x + b来说这就是有一个特征x两个参数a b,多个样本的话比如y=a*x1+b*x2+...,用向量表示就是y = ,就是n个特征,n个参数的拟合问题(假设x0 与最后的偏置项写在一起)。
Logistic 回归
Logistic regression (逻辑回归)是当前业界常用于分类的机器学习方法,用于估计某种事物的可能性。可以简单把这个模型想象为一个服从参数为θ的概率分布,给定向量x,得到的y值就是分布函数值,最后根据分布函数值的大小来判断分类的类别。
比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。(注意这里是:“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用。该结果往往用于和其他特征值加权求和,而非直接相乘)
logistic为什么叫回归但是却用来分类呢,比如很多情况下,我们需要回归产生一个类似概率值的0~1之间的数值(比如某一双鞋子今天能否卖出去?或者某一个广告能否被用户点击? 我们希望得到这个数值来帮助决策鞋子上不上架,以及广告展不展示)。这个数值必须是0~1之间,但sell显然不满足这个区间要求。于是引入了Logistic方程,来做归一化。这里再次说明,该数值并不是数学中定义的概率值。那么既然得到的并不是概率值,为什么我们还要费这个劲把数值归一化为0~1之间呢?归一化的好处在于数值具备可比性和收敛的边界,这样当你在其上继续运算时(比如你不仅仅是关心鞋子的销量,而是要对鞋子卖出的可能、当地治安情况、当地运输成本 等多个要素之间加权求和,用综合的加和结果决策是否在此地开鞋店时),归一化能够保证此次得到的结果不会因为边界 太大/太小 导致 覆盖其他feature 或 被其他feature覆盖。(举个极端的例子,如果鞋子销量最低为100,但最好时能卖无限多个,而当地治安状况是用0~1之间的数值表述的,如果两者直接求和治安状况就完全被忽略了)这是用logistic回归而非直接线性回归的主要原因。到了这里,也许你已经开始意识到,没错,Logistic Regression 就是一个被logistic方程归一化后的线性回归,仅此而已。
至于所以用logistic而不用其它,是因为这种归一化的方法往往比较合理(人家都说自己叫logistic了嘛 呵呵),能够打压过大和过小的结果(往往是噪音),以保证主流的结果不至于被忽视。具体的公式及图形见本文的一、官方定义部分。其中f(X)就是我们上面例子中的sell的实数值了,而y就是得到的0~1之间的卖出可能性数值了。(本段 “可能性” 并非 “概率” ,感谢zjtchow同学在回复中指出)
Logistic Regression的适用性
1) 可用于概率预测,也可用于分类。
并不是所有的机器学习方法都可以做可能性概率预测(比如SVM就不行,它只能得到1或者-1)。可能性预测的好处是结果又可比性:比如我们得到不同广告被点击的可能性后,就可以展现点击可能性最大的N个。这样以来,哪怕得到的可能性都很高,或者可能性都很低,我们都能取最优的topN。当用于分类问题时,仅需要设定一个阈值即可,可能性高于阈值是一类,低于阈值是另一类。
2) 仅能用于线性问题
只有在feature和target是线性关系时,才能用Logistic Regression(不像SVM那样可以应对非线性问题)。这有两点指导意义,一方面当预先知道模型非线性时,果断不使用Logistic Regression; 另一方面,在使用Logistic Regression时注意选择和target呈线性关系的feature。
3) 各feature之间不需要满足条件独立假设,但各个feature的贡献是独立计算的。
逻辑回归不像朴素贝叶斯一样需要满足条件独立假设(因为它没有求后验概率)。但每个feature的贡献是独立计算的,即LR是不会自动帮你combine 不同的features产生新feature的 (时刻不能抱有这种幻想,那是决策树,LSA, pLSA, LDA或者你自己要干的事情)。举个例子,如果你需要TF*IDF这样的feature,就必须明确的给出来,若仅仅分别给出两维 TF 和 IDF 是不够的,那样只会得到类似 a*TF + b*IDF 的结果,而不会有 c*TF*IDF 的效果。
参考:
http://blog.sina.com.cn/s/blog_890c6aa301015mya.html
标签:
原文地址:http://www.cnblogs.com/ooon/p/4934413.html