码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 4791 Rebuild (2015长春现场赛,计算几何+三分)

时间:2015-11-05 22:16:51      阅读:389      评论:0      收藏:0      [点我收藏+]

标签:

Rebuild

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 521    Accepted Submission(s): 125


Problem Description
Archaeologists find ruins of Ancient ACM Civilization, and they want to rebuild it.

The ruins form a closed path on an x-y plane, which has n endpoints. The endpoints locate on (x1,y1)(x2,y2),(xn,yn) respectively. Endpoint i and endpointi1 are adjacent for 1<in, also endpoint 1 and endpoint n are adjacent. Distances between any two adjacent endpoints are positive integers.

To rebuild, they need to build one cylindrical pillar at each endpoint, the radius of the pillar of endpoint i is ri. All the pillars perpendicular to the x-y plane, and the corresponding endpoint is on the centerline of it. We call two pillars are adjacent if and only if two corresponding endpoints are adjacent. For any two adjacent pillars, one must be tangent externally to another, otherwise it will violate the aesthetics of Ancient ACM Civilization. If two pillars are not adjacent, then there are no constraints, even if they overlap each other.

Note that ri must not be less than 0 since we cannot build a pillar with negative radius and pillars with zero radius are acceptable since those kind of pillars still exist in their neighbors.

You are given the coordinates of n endpoints. Your task is to find r1,r2,,rn which makes sum of base area of all pillars as minimum as possible.

技术分享


For example, if the endpoints are at (0,0)(11,0)(27,12)(5,12), we can choose (r1r2r3r4)=(3.757.2512.759.25). The sum of base area equals to 3.752π+7.252π+12.752π+9.252π=988.816. Note that we count the area of the overlapping parts multiple times.

If there are several possible to produce the minimum sum of base area, you may output any of them.
 

 

Input
The first line contains an integer t indicating the total number of test cases. The following lines describe a test case.

The first line of each case contains one positive integer n, the size of the closed path. Next n lines, each line consists of two integers (xi,yi) indicate the coordinate of the i-th endpoint.

1t100
3n104
|xi|,|yi|104
Distances between any two adjacent endpoints are positive integers.
 

 

Output
If such answer doesn‘t exist, then print on a single line "IMPOSSIBLE" (without the quotes). Otherwise, in the first line print the minimum sum of base area, and then print n lines, the i-th of them should contain a number ri, rounded to 2 digits after the decimal point.

If there are several possible ways to produce the minimum sum of base area, you may output any of them.
 

 

Sample Input
3 4 0 0 11 0 27 12 5 12 5 0 0 7 0 7 3 3 6 0 6 5 0 0 1 0 6 12 3 16 0 12
 

 

Sample Output
988.82 3.75 7.25 12.75 9.25 157.08 6.00 1.00 2.00 3.00 0.00 IMPOSSIBLE
 

 

Source
 
 
 
【题意】:
 
 
 
 
  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<cmath>
  5 #include<algorithm>
  6 #define eps 1e-8
  7 #define PI acos(-1.0)
  8 #define LL long long
  9 #define maxn 100100
 10 #define IN freopen("in.txt","r",stdin);
 11 using namespace std;
 12 
 13 
 14 struct Point {
 15     double x,y;
 16 };
 17 
 18 int sign(double x) {
 19     if(fabs(x)<eps) return 0;
 20     return x<0? -1:1;
 21 }
 22 
 23 double Distance(Point p1,Point p2) {
 24     return sqrt((p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y));
 25 }
 26 
 27 
 28 int n;
 29 Point p[maxn];
 30 double d[maxn];
 31 
 32 int check(double r)
 33 {
 34     if(sign(r) < 0) return 0;
 35 
 36     for(int i=2 ;i<=n; i++) {
 37         r = d[i]-r;
 38         if(sign(r) < 0) return 0;
 39     }
 40     return 1;
 41 }
 42 
 43 
 44 /*三分法求面积最小时的r*/
 45 double a,b,c;
 46 double cal(double x) {
 47     return a*x*x + b*x + c;
 48 }
 49 
 50 double solve(double low, double high)
 51 {
 52     while(high-low > eps){
 53         double mid = (high+low)/2.0;
 54         double midmid = (mid+high)/2.0;
 55         if(sign(cal(midmid)-cal(mid)) > 0) high = midmid;
 56         else low = mid;
 57     }
 58 
 59     return low;
 60 }
 61 
 62 
 63 int main(int argc, char const *argv[])
 64 {
 65     //IN;
 66 
 67     int t;scanf("%d",&t);
 68     while(t--)
 69     {
 70         double r = 0;
 71         memset(p, 0, sizeof(p));
 72         memset(d, 0, sizeof(d));
 73         int flag = 1;
 74 
 75         scanf("%d", &n);
 76         for(int i=1 ;i<=n; i++)
 77             scanf("%lf %lf", &p[i].x, &p[i].y);
 78         d[1]=Distance(p[1], p[n]);
 79         for(int i=2; i<=n; i++)
 80             d[i] = Distance(p[i], p[i-1]);
 81 
 82         if(n%2 != 0){
 83             r = d[1];
 84             for(int i=2; i<=n; i++){
 85                 if(i%2 == 0) r += d[i];
 86                 else r -= d[i];
 87             }
 88             r /= 2.0;
 89             flag = check(r);
 90         }
 91 
 92         else{
 93             double tmp = 0;
 94             for(int i=1; i<=n; i++){
 95                 if(i%2 != 0) tmp += d[i];
 96                 else tmp -= d[i];
 97             }
 98             if(sign(tmp) != 0) {flag=0; goto end;}
 99 
100             /*半径平方和的二次表达式*/
101             a=1.0; b=0; c=0;
102             tmp = 0;
103             for(int i=2; i<=n; i++){
104                 a += 1.0;
105                 tmp = d[i]-tmp;
106                 c += tmp*tmp;
107                 if(i%2 == 0) b -= 2.0*tmp;
108                 else b += 2.0*tmp;
109             }
110 
111             /*
112                 错误地以为最低点为唯一取值点,若最低点不符合则无解.
113                 r=(-b)/(2.0*a);
114                 if(sign(r)<0) r=0;
115                 flag = check(r);
116             */
117 
118             /*检查每条边计算三分时r的可行范围*/
119             double low=0, high = d[1];
120             tmp = 0;
121             for(int i=2; i<=n; i++){
122                 if(i%2 == 0){
123                     tmp += d[i];
124                     high = min(high, tmp);
125                 }
126                 else{
127                     tmp -= d[i];
128                     low = max(low, tmp);
129                 }
130             }
131 
132             if(low > high) flag = 0;
133             else{
134                 r = solve(low, high);
135                 flag = check(r);
136             }
137         }
138 
139         end:
140         if(!flag) printf("IMPOSSIBLE\n");
141         else{
142             double R[maxn];
143             R[1]=r;
144             double temp = 0;
145             for(int i=2; i<=n; i++){
146                 temp = d[i]-R[i-1];
147                 R[i] = temp;
148             }
149             double ans = 0;
150             for(int i=1; i<=n; i++){
151                 //ans += R[i]*R[i]*PI;精度问题
152                 ans += R[i]*R[i];
153             }
154 
155             printf("%.2lf\n", ans*PI);
156             for(int i=1; i<=n; i++){
157                 printf("%.2lf\n", R[i]);
158             }
159         }
160 
161     }
162 
163     return 0;
164 }

 

HDU 4791 Rebuild (2015长春现场赛,计算几何+三分)

标签:

原文地址:http://www.cnblogs.com/Sunshine-tcf/p/4940699.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!