标签:
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1350 Accepted Submission(s): 558
官方题解:
我们可以将一条线段[xi,yi]分为两个端点xi和(yi)+1,
在xi时该点会新加入一条线段,同样的,在(yi)+1时该点会减少一条线段,
因此对于2n个端点进行排序,令xi为价值1,yi为价值-1,问题转化成了最大区间和,
因为1一定在-1之前,因此问题变成最大前缀和,我们寻找最大值就是答案,另外的,
这题可以用离散化后线段树来做。复杂度为排序的复杂度即nlgn,
另外如果用第一种做法数组应是2n,而不是n,由于各种非确定性因素我在小数据就已
经设了n=10W的点。
题解:1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 #include<algorithm> 6 #define mem(x,y) memset(x,y,sizeof(x)) 7 using namespace std; 8 typedef long long LL; 9 const int INF=0x3f3f3f3f; 10 const int MAXN=1e5+100; 11 pair<int,int>pa[MAXN<<1]; 12 int main(){ 13 int T,N; 14 scanf("%d",&T); 15 while(T--){int a,b; 16 scanf("%d",&N); 17 for(int i=0;i<N;i++){ 18 scanf("%d%d",&a,&b); 19 pa[i<<1]=make_pair(a,1); 20 pa[i<<1|1]=make_pair(b+1,-1); 21 } 22 sort(pa,pa+N*2); 23 int ans=0,cnt=0; 24 for(int i=0;i<2*N;i++) 25 cnt+=pa[i].second,ans=max(ans,cnt); 26 printf("%d\n",ans); 27 } 28 return 0; 29 }
标签:
原文地址:http://www.cnblogs.com/handsomecui/p/4946174.html