标签:
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
O(n2)
.题目要求时间复杂度小于O(n2),于是我们就想有没有O(n log n)或者O(n)的做法。一些排序算法是O(n log n),但是题目要求不能更改原序列且空间复杂度为O(1)。
Binary search的复杂度是O(log n),前提是排好序的数组。所以肯定不能用输入数组来进行二分查找。
这一题提供了一个思路是对可行解序列/集合进行二分查找。
由于题目中有明确的各个元素的取值范围,我们可以判断出解一定在[1, n]这个区间内。start = 1, end = n。对于每个mid值,我们计算等于mid的count和小于等于mid的count。
注意:
smallerCount 是和mid值比较。比如mid = 5,那么如果smallerCount <= 5,说明解一定不在[1,5]这个区间内。
1 public class Solution { 2 public int findDuplicate(int[] nums) { 3 int start = 1, end = nums.length - 1, mid; 4 while (start + 1 < end) { 5 mid = (end - start) / 2 + start; 6 int smallerMid = 0; 7 for (int i : nums) { 8 if (i <= mid) { 9 smallerMid++; 10 } 11 } 12 // Compare with mid 13 if (smallerMid <= mid) { 14 start = mid; 15 } else{ 16 end = mid; 17 } 18 } 19 int countStart = 0; 20 for (int i : nums) { 21 if (i == start) { 22 countStart++; 23 } 24 } 25 if (countStart > 1) { 26 return start; 27 } 28 return end; 29 } 30 }
参考Discuss,发现有O(n)的解法
参考Linked List II,我们将输入的array也可看作是list,每个数组元素代表这个node的next
1 public class Solution { 2 public int findDuplicate(int[] nums) { 3 if (nums == null || nums.length < 2) { 4 return 0; 5 } 6 int slow = nums[0]; 7 int fast = nums[slow]; 8 while (fast != slow) { 9 slow = nums[slow]; 10 fast = nums[nums[fast]]; 11 } 12 fast = 0; 13 while (fast != slow) { 14 slow = nums[slow]; 15 fast = nums[fast]; 16 } 17 return slow; 18 } 19 }
标签:
原文地址:http://www.cnblogs.com/ireneyanglan/p/4946660.html