标签:style blog http color 使用 os
使用定向麦克风进行波束追踪 (Beam Tracking for a Directional Microphone)
可以使用这4个麦克风来模拟定向麦克风产生的效果,这个过程称之为波束追踪(beam tracking)
界面上的细长矩形用来指示某一时刻探测到的说话者的语音方向。矩形有一个旋转变换,在垂直轴上左右摆动,以表示声音的不同来源方向。
<Rectangle Fill="#1BA78B" HorizontalAlignment="Left" Margin="240,41,0,39" Stroke="Black" Width="10" RenderTransformOrigin="0.5,0"> <Rectangle.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="{Binding BeamAngle}"/> <TranslateTransform/> </TransformGroup> </Rectangle.RenderTransform> </Rectangle>
上图是程序的UI界面。后台逻辑代码和之前的例子大部分都是相同的。首先实例化一个KinectAudioSource对象,然后将主窗体的DataContext赋值给本身。将BeamAngleMode设置为Adaptive,使得能够自动追踪说话者的声音。我们需要编写KinectAudioSource对象的BeamChanged事件对应的处理方法。当用户的说话时,位置发生变化时就会触发该事件。我们需要创建一个名为BeamAngle的属性,使得矩形的RotateTransform可以绑定这个属性。
public partial class MainWindow : Window, INotifyPropertyChanged { public MainWindow() { InitializeComponent(); this.DataContext = this; this.Loaded += delegate { ListenForBeamChanges(); }; } private KinectAudioSource CreateAudioSource() { var source = KinectSensor.KinectSensors[0].AudioSource; source.NoiseSuppression = true; source.AutomaticGainControlEnabled = true; source.BeamAngleMode = BeamAngleMode.Adaptive; return source; } private void ListenForBeamChanges() { KinectSensor.KinectSensors[0].Start(); var audioSource = CreateAudioSource(); audioSource.BeamAngleChanged += audioSource_BeamAngleChanged; audioSource.Start(); } public event PropertyChangedEventHandler PropertyChanged; private void OnPropertyChanged(string propName) { if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs(propName)); } private double _beamAngle; public double BeamAngle { get { return _beamAngle; } set { _beamAngle = value; OnPropertyChanged("BeamAngle"); } } }
以上代码中,还需要对BeamChanged事件编写对应的处理方法。每次当波束的方向发生改变时,就更改BeamAngle的属性。SDK中使用弧度表示角度。所以在事件处理方法中我们需要将弧度换成度。为了能达到说话者移到左边,矩形条也能够向左边移动的效果,我们需要将角度乘以一个 –1
void audioSource_BeamAngleChanged(object sender, BeamAngleChangedEventArgs e) { BeamAngle = -1 * e.Angle; }
语音命令识别
结合KinectAudioSource和SpeechRecognitionEngine来演示语音命令识别的强大功能。为了展示语音命令能够和骨骼追踪高效结合,我们会使用语音命令向窗体上绘制图形,并使用命令移动这些图形到光标的位置
CrossHair用户控件简单的以十字光标形式显示当前用户右手的位置。下面的代码显示了这个自定义控件的XAML文件。注意到对象于容器有一定的偏移使得十字光标的中心能够处于Grid的零点。
自定义控件 CrossHairs
CrossHair用户控件简单的以十字光标形式显示当前用户右手的位置。下面的代码显示了这个自定义控件的XAML文件。注意到对象于容器有一定的偏移使得十字光标的中心能够处于Grid的零点。
<Grid Height="50" Width="50" RenderTransformOrigin="0.5,0.5"> <Grid.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform/> <TranslateTransform X="-25" Y="-25"/> </TransformGroup> </Grid.RenderTransform> <Rectangle Fill="#FFF4F4F5" Margin="22,0,20,0" Stroke="#FFF4F4F5"/> <Rectangle Fill="#FFF4F4F5" Margin="0,22,0,21" Stroke="#FFF4F4F5"/> </Grid>
在应用程序的主窗体中,将根节点从 grid 对象改为 canvas对象。Canvas对象使得将十字光标使用动画滑动到手的位置比较容易。在主窗体上添加一个CrossHairs自定义控件。在下面的代码中,我们可以看到将Canvas对象嵌套在了一个Viewbox控件中。这是一个比较老的处理不同屏幕分辨率的技巧。ViewBox控件会自动的将内容进行缩放以适应实际屏幕的大小。设置MainWindows的背景色,并将Canvas的颜色设置为黑色。然后在Canvas的底部添加两个标签。一个标签用来显示SpeechRecognitionEngine将要处理的语音指令,另一个标签显示匹配正确的置信度。CrossHair自定义控件绑定了HandTop和HandLeft属性。两个标签分别绑定了HypothesizedText和Confidence属性。
<Window x:Class="KinectPutThatThere.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:KinectPutThatThere" Title="Put That There" Background="Black"> <Viewbox> <Canvas x:Name="MainStage" Height="1080" Width="1920" Background="Black" VerticalAlignment="Bottom"> <local:CrossHairs Canvas.Top="{Binding HandTop}" Canvas.Left="{Binding HandLeft}" /> <Label Foreground="White" Content="{Binding HypothesizedText}" Height="55" FontSize="32" Width="965" Canvas.Left="115" Canvas.Top="1025" /> <Label Foreground="Green" Content="{Binding Confidence}" Height="55" Width="114" FontSize="32" Canvas.Left="0" Canvas.Top="1025" /> </Canvas> </Viewbox> </Window>
在后台逻辑代码中,让MainWindows对象实现INofityPropertyChanged事件并添加OnPropertyChanged帮助方法。我们将创建4个属性用来为前台UI界面进行绑定。
public partial class MainWindow : Window, INotifyPropertyChanged { private double _handLeft; public double HandLeft { get { return _handLeft; } set { _handLeft = value; OnPropertyChanged("HandLeft"); } } private double _handTop; public double HandTop { get { return _handTop; } set { _handTop = value; OnPropertyChanged("HandTop"); } } private string _hypothesizedText; public string HypothesizedText { get { return _hypothesizedText; } set { _hypothesizedText = value; OnPropertyChanged("HypothesizedText"); } } private string _confidence; public string Confidence { get { return _confidence; } set { _confidence = value; OnPropertyChanged("Confidence"); } } public event PropertyChangedEventHandler PropertyChanged; private void OnPropertyChanged(string propertyName) { if (PropertyChanged != null) { PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } }
添加CreateAudioSource方法,在该方法中,将KinectAudioSource对象的AutoGainControlEnabled的属性设置为false。
private KinectAudioSource CreateAudioSource() { var source = KinectSensor.KinectSensors[0].AudioSource; source.AutomaticGainControlEnabled = false; source.EchoCancellationMode = EchoCancellationMode.None; return source; }
接下来实现骨骼追踪部分逻辑来获取右手的坐标,相信看完骨骼追踪那两篇文章后这部分的代码应该会比较熟悉。首先创建一个私有字段_kinectSensor来保存当前的KienctSensor对象,同时创建SpeechRecognitionEngine对象。在窗体的构造函数中,对这几个变量进行初始化。例外注册骨骼追踪系统的Skeleton事件并将主窗体的DataContext对象赋给自己。
KinectSensor _kinectSensor; SpeechRecognitionEngine _sre; KinectAudioSource _source; public MainWindow() { InitializeComponent(); this.DataContext = this; this.Unloaded += delegate { _kinectSensor.SkeletonStream.Disable(); _sre.RecognizeAsyncCancel(); _sre.RecognizeAsyncStop(); _sre.Dispose(); }; this.Loaded += delegate { _kinectSensor = KinectSensor.KinectSensors[0]; _kinectSensor.SkeletonStream.Enable(new TransformSmoothParameters() { Correction = 0.5f, JitterRadius = 0.05f, MaxDeviationRadius = 0.04f, Smoothing = 0.5f }); _kinectSensor.SkeletonFrameReady += nui_SkeletonFrameReady; _kinectSensor.Start(); StartSpeechRecognition(); }; }
在上面的代码中,我们添加了一些TransformSmoothParameters参数来使得骨骼追踪更加平滑。nui_SkeletonFrameReady方法如下。方式使用骨骼追踪数据来获取我们感兴趣的右手的关节点位置。这部分代码和之前文章中的类似。大致流程是:遍历当前处在追踪状态下的骨骼信息。然后找到右手关节点的矢量信息,然后使用SkeletonToDepthImage来获取相对于屏幕尺寸的X,Y坐标信息。
void nui_SkeletonFrameReady(object sender, SkeletonFrameReadyEventArgs e) { using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame()) { if (skeletonFrame == null) return; var skeletons = new Skeleton[skeletonFrame.SkeletonArrayLength]; skeletonFrame.CopySkeletonDataTo(skeletons); foreach (Skeleton skeletonData in skeletons) { if (skeletonData.TrackingState == SkeletonTrackingState.Tracked) { Microsoft.Kinect.SkeletonPoint rightHandVec = skeletonData.Joints[JointType.HandRight].Position; var depthPoint = _kinectSensor.MapSkeletonPointToDepth(rightHandVec , DepthImageFormat.Resolution640x480Fps30); HandTop = depthPoint.Y * this.MainStage.ActualHeight / 480; HandLeft = depthPoint.X * this.MainStage.ActualWidth / 640; } } } }
接下来我们需要实现语音识别部分的逻辑。SpeechRecognitionEngine中的StartSpeechRecognition方法必须找到正确的语音识别库来进行语音识别。下面的代码展示了如何设置语音识别库预计如何将KinectAudioSource传递给语音识别引起。我们还添加了SpeechRecognized,SpeechHypothesized以及SpeechRejected事件对应的方法。SetInputToAudioStream中的参数和前篇文章中的含义一样,这里不多解释了。注意到SpeechRecognitionEngine和KinectAudioSource都是Disposable类型,因此在整个应用程序的周期内,我们要保证这两个对象都处于打开状态。
private void StartSpeechRecognition() { _source = CreateAudioSource(); Func<RecognizerInfo, bool> matchingFunc = r => { string value; r.AdditionalInfo.TryGetValue("Kinect", out value); return "True".Equals(value, StringComparison.InvariantCultureIgnoreCase) && "en-US".Equals(r.Culture.Name, StringComparison.InvariantCultureIgnoreCase); }; RecognizerInfo ri = SpeechRecognitionEngine.InstalledRecognizers().Where(matchingFunc).FirstOrDefault(); _sre = new SpeechRecognitionEngine(ri.Id); CreateGrammars(ri); _sre.SpeechRecognized += sre_SpeechRecognized; _sre.SpeechHypothesized += sre_SpeechHypothesized; _sre.SpeechRecognitionRejected += sre_SpeechRecognitionRejected; Stream s = _source.Start(); _sre.SetInputToAudioStream(s, new SpeechAudioFormatInfo( EncodingFormat.Pcm, 16000, 16, 1, 32000, 2, null)); _sre.RecognizeAsync(RecognizeMode.Multiple); }
要完成程序逻辑部分,我们还需要处理语音识别时间以及语音逻辑部分,以使得引擎能够直到如何处理和执行我们的语音命令。SpeechHypothesized以及SpeechRejected事件代码如下,这两个事件的逻辑很简单,就是更新UI界面上的label。SpeechRecognized事件有点复杂,他负责处理传进去的语音指令,并对识别出的指令执行相应的操作。另外,该事件还负责创建一些GUI对象(实际就是命令模式),我们必须使用Dispatcher对象来发挥InterpretCommand到主UI线程中来。
void sre_SpeechRecognitionRejected(object sender, SpeechRecognitionRejectedEventArgs e) { HypothesizedText += " Rejected"; Confidence = Math.Round(e.Result.Confidence, 2).ToString(); } void sre_SpeechHypothesized(object sender, SpeechHypothesizedEventArgs e) { HypothesizedText = e.Result.Text; } void sre_SpeechRecognized(object sender, SpeechRecognizedEventArgs e) { Dispatcher.BeginInvoke(new Action<SpeechRecognizedEventArgs>(InterpretCommand), e); }
现在到了程序核心的地方。创建语法逻辑并对其进行解析。本例中的程序识别普通的以“put”或者“create”开头的命令。前面是什么我们不关心,紧接着应该是一个颜色,然后是一种形状,最后一个词应该是“there”。下面的代码显示了创建的语法。
private void CreateGrammars(RecognizerInfo ri) { var colors = new Choices(); colors.Add("cyan"); colors.Add("yellow"); colors.Add("magenta"); colors.Add("blue"); colors.Add("green"); colors.Add("red"); var create = new Choices(); create.Add("create"); create.Add("put"); var shapes = new Choices(); shapes.Add("circle"); shapes.Add("triangle"); shapes.Add("square"); shapes.Add("diamond"); var gb = new GrammarBuilder(); gb.Culture = ri.Culture; gb.Append(create); gb.AppendWildcard(); gb.Append(colors); gb.Append(shapes); gb.Append("there"); var g = new Grammar(gb); _sre.LoadGrammar(g); var q = new GrammarBuilder{ Culture = ri.Culture }; q.Append("quit application"); var quit = new Grammar(q); _sre.LoadGrammar(quit); }
上面的代码中,我们首先创建一个Choices对象,这个对象会在命令解析中用到。在程序中我们需要颜色和形状对象。另外,第一个单词是“put”或者“create”,因此我们也创建Choices对象。然后使用GrammarBuilder类将这些对象组合到一起。首先是”put”或者“create”然后是一个占位符,因为我们不关心内容,然后是一个颜色Choices对象,然后是一个形状Choices对象,最后是一个“there”单词。
我们将这些语法规则加载进语音识别引擎。同时我们也需要有一个命令来停止语音识别引擎。因此我们创建了第二个语法对象,这个对象只有一个”Quit”命令。然后也将这个语法规则加载到引擎中。
一旦识别引擎确定了要识别的语法,真正的识别工作就开始了。被识别的句子必须被解译,出别出来想要的指令后,我们必须决定如何进行下一步处理。下面的代码展示了如何处理识别出的命令,以及如何根据特定的指令来讲图形元素绘制到UI界面上去。
private void InterpretCommand(SpeechRecognizedEventArgs e) { var result = e.Result; Confidence = Math.Round(result.Confidence, 2).ToString(); if (result.Confidence < 95 && result.Words[0].Text == "quit" && result.Words[1].Text == "application") { this.Close(); } if (result.Words[0].Text == "put" || result.Words[0].Text == "create") { var colorString = result.Words[2].Text; Color color; switch (colorString) { case "cyan": color = Colors.Cyan; break; case "yellow": color = Colors.Yellow; break; case "magenta": color = Colors.Magenta; break; case "blue": color = Colors.Blue; break; case "green": color = Colors.Green; break; case "red": color = Colors.Red; break; default: return; } var shapeString = result.Words[3].Text; Shape shape; switch (shapeString) { case "circle": shape = new Ellipse(); shape.Width = 150; shape.Height = 150; break; case "square": shape = new Rectangle(); shape.Width = 150; shape.Height = 150; break; case "triangle": var poly = new Polygon(); poly.Points.Add(new Point(0, 0)); poly.Points.Add(new Point(150, 0)); poly.Points.Add(new Point(75, -150)); shape = poly; break; case "diamond": var poly2 = new Polygon(); poly2.Points.Add(new Point(0, 0)); poly2.Points.Add(new Point(75, 150)); poly2.Points.Add(new Point(150, 0)); poly2.Points.Add(new Point(75, -150)); shape = poly2; break; default: return; } shape.SetValue(Canvas.LeftProperty, HandLeft); shape.SetValue(Canvas.TopProperty, HandTop); shape.Fill = new SolidColorBrush(color); MainStage.Children.Add(shape); } }
方法中,我们首先检查语句识别出的单词是否是”Quit”如果是的,紧接着判断第二个单词是不是”application”如果两个条件都满足了,就不进行绘制图形,直接返回。如果有一个条件不满足,就继续执行下一步。
InterpretCommand方法然后判断第一个单词是否是“create”或者“put”,如果不是这两个单词开头就什么也不执行。如果是的,就判断第三个单词,并根据识别出来的颜色创建对象。如果第三个单词没有正确识别,应用程序也停止处理。否则,程序判断第四个单词,根据接收到的命令创建对应的形状。到这一步,基本的逻辑已经完成,最后第五个单词用来确定整个命令是否正确。命令处理完了之后,将当前受的X,Y坐标赋给创建好的对象的位置。
namespace KinectPutThatThere { /// <summary> /// Interaction logic for MainWindow.xaml /// </summary> public partial class MainWindow : Window, INotifyPropertyChanged { KinectSensor _kinectSensor; SpeechRecognitionEngine _sre; KinectAudioSource _source; public MainWindow() { InitializeComponent(); this.DataContext = this; this.Unloaded += delegate { _kinectSensor.SkeletonStream.Disable(); _sre.RecognizeAsyncCancel(); _sre.RecognizeAsyncStop(); //_source.Dispose(); _sre.Dispose(); }; this.Loaded += delegate { _kinectSensor = KinectSensor.KinectSensors[0]; _kinectSensor.SkeletonStream.Enable(new TransformSmoothParameters() // 对骨骼数据进行平滑处理 { // This struct is used to setup the skeleton smoothing values Correction = 0.5f, JitterRadius = 0.05f, MaxDeviationRadius = 0.04f, Smoothing = 0.5f }); _kinectSensor.SkeletonFrameReady += nui_SkeletonFrameReady; _kinectSensor.Start(); StartSpeechRecognition(); }; } #region 骨骼数据处理 void nui_SkeletonFrameReady(object sender, SkeletonFrameReadyEventArgs e) { using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame()) { if (skeletonFrame == null) return; var skeletons = new Skeleton[skeletonFrame.SkeletonArrayLength]; // 不定类型 —— Skeleton skeletonFrame.CopySkeletonDataTo(skeletons); foreach (Skeleton skeletonData in skeletons) { if (skeletonData.TrackingState == SkeletonTrackingState.Tracked) { Microsoft.Kinect.SkeletonPoint rightHandVec = skeletonData.Joints[JointType.HandRight].Position; var depthPoint = _kinectSensor.MapSkeletonPointToDepth(rightHandVec , DepthImageFormat.Resolution640x480Fps30); HandTop = depthPoint.Y * this.MainStage.ActualHeight / 480; HandLeft = depthPoint.X * this.MainStage.ActualWidth / 640; } } } } #endregion private KinectAudioSource CreateAudioSource() { var source = KinectSensor.KinectSensors[0].AudioSource; source.AutomaticGainControlEnabled = false; source.EchoCancellationMode = EchoCancellationMode.None; return source; } private void StartSpeechRecognition() { _source = CreateAudioSource(); Func<RecognizerInfo, bool> matchingFunc = r => { string value; r.AdditionalInfo.TryGetValue("Kinect", out value); return "True".Equals(value, StringComparison.InvariantCultureIgnoreCase) && "en-US".Equals(r.Culture.Name, StringComparison.InvariantCultureIgnoreCase); }; // 识别库 RecognizerInfo ri = SpeechRecognitionEngine.InstalledRecognizers().Where(matchingFunc).FirstOrDefault(); _sre = new SpeechRecognitionEngine(ri.Id); // 需要设置识别引擎的ID编号 CreateGrammars(ri); _sre.SpeechRecognized += sre_SpeechRecognized; _sre.SpeechHypothesized += sre_SpeechHypothesized; _sre.SpeechRecognitionRejected += sre_SpeechRecognitionRejected; Stream s = _source.Start(); _sre.SetInputToAudioStream(s, new SpeechAudioFormatInfo( EncodingFormat.Pcm, 16000, 16, 1, 32000, 2, null)); _sre.RecognizeAsync(RecognizeMode.Multiple); } private void CreateGrammars(RecognizerInfo ri) { // 创建语法 var colors = new Choices(); // 通配符 —— 择类(Choices)是通配符类(Wildcard)的一种,它可以包含多个值。但与通配符不同的是,我们可以指定可接受的值的顺序。 colors.Add("cyan"); colors.Add("yellow"); colors.Add("magenta"); colors.Add("blue"); colors.Add("green"); colors.Add("red"); var create = new Choices(); create.Add("create"); create.Add("put"); var shapes = new Choices(); shapes.Add("circle"); shapes.Add("triangle"); shapes.Add("square"); shapes.Add("diamond"); var gb = new GrammarBuilder(); gb.Culture = ri.Culture; gb.Append(create); gb.AppendWildcard(); gb.Append(colors); gb.Append(shapes); gb.Append("there"); var g = new Grammar(gb); _sre.LoadGrammar(g); var q = new GrammarBuilder { Culture = ri.Culture }; q.Append("quit application"); var quit = new Grammar(q); _sre.LoadGrammar(quit); } #region 语音事件处理 void sre_SpeechRecognitionRejected(object sender, SpeechRecognitionRejectedEventArgs e) { HypothesizedText += " Rejected"; Confidence = Math.Round(e.Result.Confidence, 2).ToString(); } void sre_SpeechHypothesized(object sender, SpeechHypothesizedEventArgs e) { HypothesizedText = e.Result.Text; } void sre_SpeechRecognized(object sender, SpeechRecognizedEventArgs e) { Dispatcher.BeginInvoke(new Action<SpeechRecognizedEventArgs>(InterpretCommand), e); } #endregion private void InterpretCommand(SpeechRecognizedEventArgs e) { var result = e.Result; Confidence = Math.Round(result.Confidence, 2).ToString(); if (result.Confidence < 95 && result.Words[0].Text == "quit" && result.Words[1].Text == "application") { this.Close(); } if (result.Words[0].Text == "put" || result.Words[0].Text == "create") { var colorString = result.Words[2].Text; Color color; switch (colorString) { case "cyan": color = Colors.Cyan; break; case "yellow": color = Colors.Yellow; break; case "magenta": color = Colors.Magenta; break; case "blue": color = Colors.Blue; break; case "green": color = Colors.Green; break; case "red": color = Colors.Red; break; default: return; } var shapeString = result.Words[3].Text; Shape shape; switch (shapeString) { case "circle": shape = new Ellipse(); shape.Width = 150; shape.Height = 150; break; case "square": shape = new Rectangle(); shape.Width = 150; shape.Height = 150; break; case "triangle": var poly = new Polygon(); poly.Points.Add(new Point(0, 0)); poly.Points.Add(new Point(150, 0)); poly.Points.Add(new Point(75, -150)); shape = poly; break; case "diamond": var poly2 = new Polygon(); poly2.Points.Add(new Point(0, 0)); poly2.Points.Add(new Point(75, 150)); poly2.Points.Add(new Point(150, 0)); poly2.Points.Add(new Point(75, -150)); shape = poly2; break; default: return; } shape.SetValue(Canvas.LeftProperty, HandLeft); shape.SetValue(Canvas.TopProperty, HandTop); shape.Fill = new SolidColorBrush(color); MainStage.Children.Add(shape); } } #region 前台控件的绑定 private double _handLeft; public double HandLeft { get { return _handLeft; } set { _handLeft = value; OnPropertyChanged("HandLeft"); } } private double _handTop; public double HandTop { get { return _handTop; } set { _handTop = value; OnPropertyChanged("HandTop"); // 驱动控件 } } private string _hypothesizedText; public string HypothesizedText { get { return _hypothesizedText; } set { _hypothesizedText = value; OnPropertyChanged("HypothesizedText"); } } private string _confidence; public string Confidence { get { return _confidence; } set { _confidence = value; OnPropertyChanged("Confidence"); } } public event PropertyChangedEventHandler PropertyChanged; private void OnPropertyChanged(string propertyName) { if (PropertyChanged != null) { PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } #endregion } }
Kinect 开发 —— 语音识别(下),布布扣,bubuko.com
标签:style blog http color 使用 os
原文地址:http://www.cnblogs.com/sprint1989/p/3854982.html