创建表: hive> CREATE TABLE pokes (foo INT, bar STRING); Creates a table called pokes with two columns, the first being an integer and the other a string
创建一个新表,结构与其他一样 hive> create table new_table like records;
创建分区表: hive> create table logs(ts bigint,line string) partitioned by (dt String,country String);
加载分区表数据: hive> load data local inpath ‘/home/hadoop/input/hive/partitions/file1‘ into table logs partition (dt=‘2001-01-01‘,country=‘GB‘);
展示表中有多少分区: hive> show partitions logs;
展示所有表: hive> SHOW TABLES; lists all the tables hive> SHOW TABLES ‘.*s‘;
lists all the table that end with ‘s‘. The pattern matching follows Java regular expressions. Check out this link for documentation http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
显示表的结构信息 hive> DESCRIBE invites; shows the list of columns
更新表的名称: hive> ALTER TABLE source RENAME TO target;
添加新一列 hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT ‘a comment‘); 删除表: hive> DROP TABLE records; 删除表中数据,但要保持表的结构定义 hive> dfs -rmr /user/hive/warehouse/records;
从本地文件加载数据: hive> LOAD DATA LOCAL INPATH ‘/home/hadoop/input/ncdc/micro-tab/sample.txt‘ OVERWRITE INTO TABLE records;
显示所有函数: hive> show functions;
查看函数用法: hive> describe function substr;
查看数组、map、结构 hive> select col1[0],col2[‘b‘],col3.c from complex;
内连接: hive> SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
查看hive为某个查询使用多少个MapReduce作业 hive> Explain SELECT sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
外连接: hive> SELECT sales.*, things.* FROM sales LEFT OUTER JOIN things ON (sales.id = things.id); hive> SELECT sales.*, things.* FROM sales RIGHT OUTER JOIN things ON (sales.id = things.id); hive> SELECT sales.*, things.* FROM sales FULL OUTER JOIN things ON (sales.id = things.id);
in查询:Hive不支持,但可以使用LEFT SEMI JOIN hive> SELECT * FROM things LEFT SEMI JOIN sales ON (sales.id = things.id);
Map连接:Hive可以把较小的表放入每个Mapper的内存来执行连接操作 hive> SELECT /*+ MAPJOIN(things) */ sales.*, things.* FROM sales JOIN things ON (sales.id = things.id);
INSERT OVERWRITE TABLE ..SELECT:新表预先存在 hive> FROM records2 > INSERT OVERWRITE TABLE stations_by_year SELECT year, COUNT(DISTINCT station) GROUP BY year > INSERT OVERWRITE TABLE records_by_year SELECT year, COUNT(1) GROUP BY year > INSERT OVERWRITE TABLE good_records_by_year SELECT year, COUNT(1) WHERE temperature != 9999 AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9) GROUP BY year;
CREATE TABLE ... AS SELECT:新表表预先不存在 hive>CREATE TABLE target AS SELECT col1,col2 FROM source;
创建视图: hive> CREATE VIEW valid_records AS SELECT * FROM records2 WHERE temperature !=9999;
查看视图详细信息: hive> DESCRIBE EXTENDED valid_records;
原文地址:http://www.cnblogs.com/zzjhn/p/3855572.html