标签:
前言
实验内容:Exercise:Learning color features with Sparse Autoencoders。即:利用线性解码器,从100000张8*8的RGB图像块中提取彩色特征,这些特征会被用于下一节的练习
理论知识:线性解码器和http://www.cnblogs.com/tornadomeet/archive/2013/04/08/3007435.html
实验基础说明:
1.为什么要用线性解码器,而不用前面用过的栈式自编码器等?即:线性解码器的作用?
这一点,Ng已经在讲解中说明了,因为线性解码器不用要求输入数据范围一定为(0,1),而前面用过的栈式自编码器等要求输入数据范围必须为(0,1)。因为a3的输出值是f函数的输出,而在普通的sparse autoencoder中f函数一般为sigmoid函数,所以其输出值的范围为(0,1),所以可以知道a3的输出值范围也在0到1之间。另外我们知道,在稀疏模型中的输出层应该是尽量和输入层特征相同,也就是说a3=x1,这样就可以推导出x1也是在0和1之间,那就是要求我们对输入到网络中的数据要先变换到0和1之间,这一条件虽然在有些领域满足,比如前面实验中的MINIST数字识别。但是有些领域,比如说使用了PCA Whitening后的数据,其范围却不一定在0和1之间。因此Linear Decoder方法就出现了。Linear Decoder是指在隐含层采用的激发函数是sigmoid函数,而在输出层的激发函数采用的是线性函数,比如说最特别的线性函数——等值函数。
2.在实验中,在ZCA whitening前进行数据预处理时,为什么是对patches的每行0均值化(每列代表一个样本),而以前的实验都是对每列即每个样本0均值化?
因为以前是灰度图,现在是RGB彩色图,如果现在对每列平均就是对三个通道求平均,这肯定不行,别外,以前是自然图像,自然图像中像素之间的统计特征都一样,有一定的相关性,而现在是人工分割的图像块,没有这种特性。
3.在实验中,把网络权值显示出来为什么是用displayColorNetwork( (W*ZCAWhite)‘),而不像以前用的是display_Network( (W1)‘)?
因为在本实验中,数据patches在输入网络前先经过了ZCA whitening的数据预处理,变成了ZCA白化后的数据ZCAWhite * patches,所以第一层隐含层输出的实际上是W*ZCAWhite * patches,也就是说从原始数据patches到第一层隐含层输出为W*ZCAWhite * patches的整个过程l转换权值为W*ZCAWhite。
4.PCA Whitening和ZCA Whitening的区别?即:为什么本实验没用PCA Whitening
PCA Whitening:处理后的各数据方差都都相等,并都为1。主要用于降维和去相关性。
ZCA Whitening:处理后的各数据方差不一定为1,但一定相等。主要用于去相关性,且能尽量保持原始数据。
5.优秀的编程技巧:
要学会用函数句柄,比如patches = bsxfun(@minus, patches, meanPatch);
因为不使用函数句柄的情况下,对函数多次调用,每次都要为该函数进行全面的路径搜索,直接影响计算速度,借助句柄可以完全避免这种时间损耗。也就是直接指定了函数的指针。函数句柄就像一个函数的名字,有点类似于C++程序中的引用。当然这一点已经在Deep Learning一之深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)中提到过,但我觉得有必须再强调一下。
实验步骤
1.初始化参数,编写计算线性解码器代价函数及其梯度的函数sparseAutoencoderLinearCost.m,主要是在sparseAutoencoderCost.m的基础上稍微修改,然后再检查其梯度实现是否正确。
2.加载数据并原始数据进行ZCA Whitening的预处理。
3.学习特征,即用LBFG算法训练整个线性解码器网络,得到整个网络权值optTheta。
4.可视化第一层学习到的特征。
实验结果
原始数据
ZCA Whitening后的数据
特征可视化结果,即:每一层学习到的特征
代码
linearDecoderExercise.m
%% CS294A/CS294W Linear Decoder Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % linear decoder exericse. For this exercise, you will only need to modify % the code in sparseAutoencoderLinearCost.m. You will not need to modify % any code in this file. %%====================================================================== %% STEP 0: Initialization % Here we initialize some parameters used for the exercise. imageChannels = 3; % number of channels (rgb, so 3) patchDim = 8; % patch dimension numPatches = 100000; % number of patches visibleSize = patchDim * patchDim * imageChannels; % number of input units outputSize = visibleSize; % number of output units hiddenSize = 400; % number of hidden units sparsityParam = 0.035; % desired average activation of the hidden units. lambda = 3e-3; % weight decay parameter beta = 5; % weight of sparsity penalty term epsilon = 0.1; % epsilon for ZCA whitening %%====================================================================== %% STEP 1: Create and modify sparseAutoencoderLinearCost.m to use a linear decoder, % and check gradients % You should copy sparseAutoencoderCost.m from your earlier exercise % and rename it to sparseAutoencoderLinearCost.m. % Then you need to rename the function from sparseAutoencoderCost to % sparseAutoencoderLinearCost, and modify it so that the sparse autoencoder % uses a linear decoder instead. Once that is done, you should check % your gradients to verify that they are correct. % NOTE: Modify sparseAutoencoderCost first! % To speed up gradient checking, we will use a reduced network and some % dummy patches debugHiddenSize = 5; debugvisibleSize = 8; patches = rand([8 10]); theta = initializeParameters(debugHiddenSize, debugvisibleSize); [cost, grad] = sparseAutoencoderLinearCost(theta, debugvisibleSize, debugHiddenSize, ... lambda, sparsityParam, beta, ... patches); % Check gradients numGrad = computeNumericalGradient( @(x) sparseAutoencoderLinearCost(x, debugvisibleSize, debugHiddenSize, ... lambda, sparsityParam, beta, ... patches), theta); % Use this to visually compare the gradients side by side disp([numGrad grad]); diff = norm(numGrad-grad)/norm(numGrad+grad); % Should be small. In our implementation, these values are usually less than 1e-9. disp(diff); assert(diff < 1e-9, ‘Difference too large. Check your gradient computation again‘); % NOTE: Once your gradients check out, you should run step 0 again to % reinitialize the parameters %} %%====================================================================== %% STEP 2: 从pathes中学习特征 Learn features on small patches % In this step, you will use your sparse autoencoder (which now uses a % linear decoder) to learn features on small patches sampled from related % images. %% STEP 2a: 加载数据 Load patches % In this step, we load 100k patches sampled from the STL10 dataset and % visualize them. Note that these patches have been scaled to [0,1] load stlSampledPatches.mat %怎么就就这个变量加到pathes上了呢?因为它里面自己定义了变量patches的值! figure; displayColorNetwork(patches(:, 1:100)); %% STEP 2b: 预处理 Apply preprocessing % In this sub-step, we preprocess the sampled patches, in particular, % ZCA whitening them. % % In a later exercise on convolution and pooling, you will need to replicate % exactly the preprocessing steps you apply to these patches before % using the autoencoder to learn features on them. Hence, we will save the % ZCA whitening and mean image matrices together with the learned features % later on. % Subtract mean patch (hence zeroing the mean of the patches) meanPatch = mean(patches, 2); %为什么是对每行求平均,以前是对每列即每个样本求平均呀?因为以前是灰度图,现在是彩色图,如果现在对每列平均就是对三个通道求平均,这肯定不行 patches = bsxfun(@minus, patches, meanPatch); % Apply ZCA whitening sigma = patches * patches‘ / numPatches; %协方差矩阵 [u, s, v] = svd(sigma); ZCAWhite = u * diag(1 ./ sqrt(diag(s) + epsilon)) * u‘; patches = ZCAWhite * patches; figure; displayColorNetwork(patches(:, 1:100)); %% STEP 2c: Learn features % You will now use your sparse autoencoder (with linear decoder) to learn % features on the preprocessed patches. This should take around 45 minutes. theta = initializeParameters(hiddenSize, visibleSize); % Use minFunc to minimize the function addpath minFunc/ options = struct; options.Method = ‘lbfgs‘; options.maxIter = 400; options.display = ‘on‘; [optTheta, cost] = minFunc( @(p) sparseAutoencoderLinearCost(p, ... visibleSize, hiddenSize, ... lambda, sparsityParam, ... beta, patches), ... theta, options); % Save the learned features and the preprocessing matrices for use in % the later exercise on convolution and pooling fprintf(‘Saving learned features and preprocessing matrices...\n‘); save(‘STL10Features.mat‘, ‘optTheta‘, ‘ZCAWhite‘, ‘meanPatch‘); fprintf(‘Saved\n‘); %% STEP 2d: Visualize learned features W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize); b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); figure; displayColorNetwork( (W*ZCAWhite)‘);
sparseAutoencoderLinearCost.m
function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ... lambda, sparsityParam, beta, data) %计算线性解码器代价函数及其梯度 % visibleSize:输入层神经单元节点数 % hiddenSize:隐藏层神经单元节点数 % lambda: 权重衰减系数 % sparsityParam: 稀疏性参数 % beta: 稀疏惩罚项的权重 % data: 训练集 % theta:参数向量,包含W1、W2、b1、b2 % -------------------- YOUR CODE HERE -------------------- % Instructions: % Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your % earlier exercise onto this file, renaming the function to % sparseAutoencoderLinearCost, and changing the autoencoder to use a % linear decoder. % -------------------- YOUR CODE HERE -------------------- % The input theta is a vector because minFunc only deal with vectors. In % this step, we will convert theta to matrix format such that they follow % the notation in the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize); b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end); % Loss and gradient variables (your code needs to compute these values) m = size(data, 2); % 样本数量 %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the loss for the Sparse Autoencoder and gradients % W1grad, W2grad, b1grad, b2grad % % Hint: 1) data(:,i) is the i-th example % 2) your computation of loss and gradients should match the size % above for loss, W1grad, W2grad, b1grad, b2grad % z2 = W1 * x + b1 % a2 = f(z2) % z3 = W2 * a2 + b2 % h_Wb = a3 = f(z3) z2 = W1 * data + repmat(b1, [1, m]); a2 = sigmoid(z2); z3 = W2 * a2 + repmat(b2, [1, m]); a3 = z3; rhohats = mean(a2,2); rho = sparsityParam; KLsum = sum(rho * log(rho ./ rhohats) + (1-rho) * log((1-rho) ./ (1-rhohats))); squares = (a3 - data).^2; squared_err_J = (1/2) * (1/m) * sum(squares(:)); %均方差项 weight_decay_J = (lambda/2) * (sum(W1(:).^2) + sum(W2(:).^2));%权重衰减项 sparsity_J = beta * KLsum; %惩罚项 cost = squared_err_J + weight_decay_J + sparsity_J;%损失函数值 % delta3 = -(data - a3) .* fprime(z3); % but fprime(z3) = a3 * (1-a3) delta3 = -(data - a3); beta_term = beta * (- rho ./ rhohats + (1-rho) ./ (1-rhohats)); delta2 = ((W2‘ * delta3) + repmat(beta_term, [1,m]) ) .* a2 .* (1-a2); W2grad = (1/m) * delta3 * a2‘ + lambda * W2; % W2梯度 b2grad = (1/m) * sum(delta3, 2); % b2梯度 W1grad = (1/m) * delta2 * data‘ + lambda * W1; % W1梯度 b1grad = (1/m) * sum(delta2, 2); % b1梯度 %------------------------------------------------------------------- % Convert weights and bias gradients to a compressed form % This step will concatenate and flatten all your gradients to a vector % which can be used in the optimization method. grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)]; end %------------------------------------------------------------------- % We are giving you the sigmoid function, you may find this function % useful in your computation of the loss and the gradients. function sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x)); end
displayColorNetwork.m
function displayColorNetwork(A) % display receptive field(s) or basis vector(s) for image patches % % A the basis, with patches as column vectors % In case the midpoint is not set at 0, we shift it dynamically if min(A(:)) >= 0 A = A - mean(A(:)); % 0均值化 end cols = round(sqrt(size(A, 2)));% 每行大图像中小图像块的个数 channel_size = size(A,1) / 3; dim = sqrt(channel_size); % 小图像块内每行或列像素点个数 dimp = dim+1; rows = ceil(size(A,2)/cols); % 每列大图像中小图像块的个数 B = A(1:channel_size,:); % R通道像素值 C = A(channel_size+1:channel_size*2,:); % G通道像素值 D = A(2*channel_size+1:channel_size*3,:); % B通道像素值 B=B./(ones(size(B,1),1)*max(abs(B)));% 归一化 C=C./(ones(size(C,1),1)*max(abs(C))); D=D./(ones(size(D,1),1)*max(abs(D))); % Initialization of the image I = ones(dim*rows+rows-1,dim*cols+cols-1,3); %Transfer features to this image matrix for i=0:rows-1 for j=0:cols-1 if i*cols+j+1 > size(B, 2) break end % This sets the patch I(i*dimp+1:i*dimp+dim,j*dimp+1:j*dimp+dim,1) = ... reshape(B(:,i*cols+j+1),[dim dim]); I(i*dimp+1:i*dimp+dim,j*dimp+1:j*dimp+dim,2) = ... reshape(C(:,i*cols+j+1),[dim dim]); I(i*dimp+1:i*dimp+dim,j*dimp+1:j*dimp+dim,3) = ... reshape(D(:,i*cols+j+1),[dim dim]); end end I = I + 1; % 使I的范围从[-1,1]变为[0,2] I = I / 2; % 使I的范围从[0,2]变为[0, 1] imagesc(I); axis equal % 等比坐标轴:设置屏幕高宽比,使得每个坐标轴的具有均匀的刻度间隔 axis off % 关闭所有的坐标轴标签、刻度、背景 end
参考资料
http://www.cnblogs.com/tornadomeet/archive/2013/04/08/3007435.html
http://www.cnblogs.com/tornadomeet/archive/2013/03/25/2980766.html
Deep Learning九之深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)
标签:
原文地址:http://www.cnblogs.com/dmzhuo/p/4964352.html