标签:
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15387 Accepted Submission(s): 9387
单点更新,区间求和。查询与更新同步,每更新一个数,求比它大的数的和,即为新增的逆序数。时间复杂度为NlogN。
最后穷举每个数作为第一个元素出现时数列的逆序数,求出最小值即可,可以很容易推出,每次更换头数字的时候,新的逆序数为(原逆序数)减去(该数数值)加上(总数字减去该数数值减一)。
#include <stdio.h> #include <stdlib.h> #include <math.h> #include <string.h> #include <algorithm> using namespace std; const int N = 5555; int num[N << 2]; int hehe[N]; void Add(int i){ num[i] = num[i * 2] + num[i * 2 + 1]; //更新父亲节点 } void Build(int left, int right, int i){ //建树 num[i] = 0; if(left == right) return; int mid = (left + right) / 2; Build(left, mid, i * 2); Build(mid + 1, right, i * 2 + 1); } void Update(int number, int left, int right, int i){ //更新结点 if(left == right){ num[i]++; return; } int mid; mid = (left + right) / 2; if(number <= mid) Update(number, left, mid, i * 2); else Update(number, mid + 1, right, i * 2 + 1); Add(i); } int Query(int ll, int rr, int left, int right, int i){ //区间查询和 if(ll <= left && rr >= right) return num[i]; int mid; mid = (left + right) / 2; int haha = 0; if(ll <= mid) haha += Query(ll, rr, left, mid, i * 2); if(rr > mid) haha += Query(ll, rr, mid + 1, right, i * 2 + 1); return haha; } int main(){ int n; while(~scanf("%d", &n)){ Build(0, n - 1, 1); int i, sum = 0; for(i = 0; i < n; i++){ scanf("%d", &hehe[i]); sum += Query(hehe[i], n - 1, 0 , n - 1, 1); Update(hehe[i], 0, n - 1, 1); } int hoho = sum; for(i = 0; i < n; i++){ sum += n - 2 * hehe[i] - 1; //推导出的逆序数穷举公式 hoho = min(sum, hoho); } printf("%d\n", hoho); } return 0; }
hdu 1394 Minimum Inversion Number (线段树)
标签:
原文地址:http://www.cnblogs.com/Cyy666/p/4969227.html