标签:
第一:Lua函数调用的总体流程
在保护性调用的情况下,lua中函数调用的流程如下,非保护性调用的流程更加简单,请追踪lua_call函数
int docall (lua_State *L, int narg, int nres) | —— int lua_pcallk (lua_State *L, int nargs, int nresults, int errfunc ...) | —— luaD_pcall (lua_State *L, Pfunc func, void *u,ptrdiff_t old_top, ptrdiff_t ef) | -- luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud) | -- void f_call (lua_State *L, void *ud) | -- void luaD_call (lua_State *L, StkId func, int nResults, int allowyield) | -- int luaD_precall (lua_State *L, StkId func, int nresults) | -- luaD_poscall
|
---...
第二:函数调用的方式和异常处理
可以看到 luaD_rawrunprotected 函数调用的实际上是 f_call,真正调用的函数在f_call中被调用,封装这一层的意义就是为了实现保护性调用。保护性调用的情况下lua虚拟机使用lua_longjmp为函数实现堆栈续传功能,也就是当错误发生的时候,在Lua内部能够最终跳转到调用点继续向下执行。所有使用luaD_rawrunprotected函数的的调用都不会因为错误直接导致程序退出,而是回到调用点然后将状态返回给外层逻辑处理。
//保护性调用 int luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud) { unsigned short oldnCcalls = L->nCcalls; struct lua_longjmp lj; lj.status = LUA_OK; lj.previous = L->errorJmp; /* chain new error handler */ L->errorJmp = &lj; LUAI_TRY(L, &lj, (*f)(L, ud); 当f函数调用出异常会回到这里继续向下走 ); L->errorJmp = lj.previous; /* restore old error handler */ L->nCcalls = oldnCcalls; return lj.status; }
对于Lua而言,只有LUA_YIELD是被视为可恢复的异常 #define errorstatus(s) ((s) > LUA_YIELD),对于其他的错误就要报错了。
其实对于调用一个函数,无论是lua函数还是c函数,可以使用lua_pacall(lua_call):这种方式的调用我们可以看到,在调用到 luaD_call 这个流程是,allowyield传的是0,也就是说是不允许挂起的,因此如果你在函数中如果使用了yield相关的函数试图挂起程序时候,再lua_yieldk中会报错:attempt to yield from outside a coroutine。因此我是不是可以理解为,如果你需要在函数中yield,就不能通过lua_pcall和lua_call的形式发起函数调用。当然还是有一种形式是使用lua_resume发起函数调用:我们知道resume的功能是唤醒一个挂起的线程(coroutine),当第一次调用的时候他只是简单的执行函数体,只有在之前有过yield挂起的记录之后再次调用resume才具备恢复线程的功能,这种方式是允许函数让出线程(yield挂起)的,下面会介绍到。
LUA_API int lua_yieldk (lua_State *L, int nresults, lua_KContext ctx, lua_KFunction k) { CallInfo *ci = L->ci; luai_userstateyield(L, nresults); lua_lock(L); api_checknelems(L, nresults); if (L->nny > 0) { if (L != G(L)->mainthread) luaG_runerror(L, "attempt to yield across a C-call boundary"); else luaG_runerror(L, "attempt to yield from outside a coroutine"); //这里报错!! } L->status = LUA_YIELD; ci->extra = savestack(L, ci->func); /* save current ‘func‘ */ if (isLua(ci)) { /* inside a hook? */ api_check(L, k == NULL, "hooks cannot continue after yielding"); } else { if ((ci->u.c.k = k) != NULL) /* is there a continuation? */ ci->u.c.ctx = ctx; /* save context */ ci->func = L->top - nresults - 1; /* protect stack below results */ luaD_throw(L, LUA_YIELD); } lua_assert(ci->callstatus & CIST_HOOKED); /* must be inside a hook */ lua_unlock(L); return 0; /* return to ‘luaD_hook‘ */ }
归纳一下上面的内容:如果你调用的是不会挂起线程的函数体或者函数块,使用lua_pcall(lua_call)以及lua_resume都能够正常执行函数,如果函数体中含有挂起线程的流程,必须使用lua_resume发起函数调用。
第三:函数调用的核心函数
lua_precall是函数调用的前半部分,lua_postcall顾名思义对应函数调用的后半部分。如果调用的是C函数,那么在lua_precall中调整调整就直接调用了,然后直接调用lua_postcall函数调用就算结束了,然而如果是lua函数,需要交给lua虚拟机执行指令集调用,因此lua_precall只是将堆栈调整妥当,等到lvm执行完毕之后在执行lua_postcall,调整返回值。
int luaD_precall (lua_State *L, StkId func, int nresults) { lua_CFunction f; CallInfo *ci; int n; /* number of arguments (Lua) or returns (C) */ ptrdiff_t funcr = savestack(L, func); switch (ttype(func)) { case LUA_TLCF: /* light C function */ f = fvalue(func); goto Cfunc; case LUA_TCCL: { /* C closure */ f = clCvalue(func)->f; Cfunc: luaC_checkGC(L); /* stack grow uses memory */ luaD_checkstack(L, LUA_MINSTACK); /* ensure minimum stack size */ ci = next_ci(L); /* now ‘enter‘ new function */ //新创建调用链,将调用信息录入 ci->nresults = nresults; ci->func = restorestack(L, funcr); ci->top = L->top + LUA_MINSTACK; lua_assert(ci->top <= L->stack_last); ci->callstatus = 0; if (L->hookmask & LUA_MASKCALL) luaD_hook(L, LUA_HOOKCALL, -1); lua_unlock(L); n = (*f)(L); /* do the actual call */ //如果是c闭包函数或者c函数,则直接调用 lua_lock(L); api_checknelems(L, n); luaD_poscall(L, L->top - n, n); //调整堆栈 return 1; } case LUA_TLCL: { /* Lua function: prepare its call */ StkId base; Proto *p = clLvalue(func)->p; n = cast_int(L->top - func) - 1; /* number of real arguments */ luaC_checkGC(L); /* stack grow uses memory */ luaD_checkstack(L, p->maxstacksize); for (; n < p->numparams; n++) //如果函数定义的参数个数大于实际的参数个数,则用nil值补足 (可以看出来越靠后的参数越靠近栈顶部) setnilvalue(L->top++); /* complete missing arguments */ if (!p->is_vararg) { //非缺省参数的函数 函数定义中不带 ... func = restorestack(L, funcr); base = func + 1; } else { //带缺省参数的函数,函数定义中带 ... base = adjust_varargs(L, p, n); func = restorestack(L, funcr); /* previous call can change stack */ } ci = next_ci(L); /* now ‘enter‘ new function */ ci->nresults = nresults; ci->func = func; ci->u.l.base = base; ci->top = base + p->maxstacksize; lua_assert(ci->top <= L->stack_last); ci->u.l.savedpc = p->code; /* starting point */ ci->callstatus = CIST_LUA; L->top = ci->top; if (L->hookmask & LUA_MASKCALL) callhook(L, ci); return 0; } //元表驱动的函数调用,"call": 函数调用操作 func(args)。 当 Lua 尝试调用一个非函数的值的时候会触发这个事件 (即 func 不是一个函数)。 查找 func 的元方法, 如果找得到,就调用这个元方法, func 作为第一个参数传 入,原来调用的参数(args)后依次排在后面。 default: { /* not a function */ luaD_checkstack(L, 1); /* ensure space for metamethod */ func = restorestack(L, funcr); /* previous call may change stack */ tryfuncTM(L, func); /* try to get ‘__call‘ metamethod */ return luaD_precall(L, func, nresults); /* now it must be a function */ } } }
lua_postcall主要是调整函数调用后的堆栈,特别是调整返回值和函数调用链,代码描述还是挺清楚的。
int luaD_poscall (lua_State *L, StkId firstResult, int nres) { StkId res; int wanted, i; CallInfo *ci = L->ci; if (L->hookmask & (LUA_MASKRET | LUA_MASKLINE)) { if (L->hookmask & LUA_MASKRET) { ptrdiff_t fr = savestack(L, firstResult); /* hook may change stack */ luaD_hook(L, LUA_HOOKRET, -1); firstResult = restorestack(L, fr); } L->oldpc = ci->previous->u.l.savedpc; /* ‘oldpc‘ for caller function */ } res = ci->func; /* res == final position of 1st result */ wanted = ci->nresults; L->ci = ci->previous; /* back to caller */ /* move results to correct place */ for (i = wanted; i != 0 && nres-- > 0; i--) setobjs2s(L, res++, firstResult++); while (i-- > 0) setnilvalue(res++); L->top = res; return (wanted - LUA_MULTRET); /* 0 iff wanted == LUA_MULTRET */ }
第四:关于续传函数的使用
上面提到了lua中函数调用的异常处理,依赖于ljmp进行异常恢复,但是如果调用链中在c函数中挂起,那么再次使用lua_resume试图恢复调用栈的时候,C中的堆栈已经丢失了。通俗点讲就是:你在一个函数A中yield,函数B中第一次resume开始执行A函数,当遇到yield时候调用流程被打断,线程被挂起,当你再次调用resume的时候,你希望的是回到A函数中继续执行A在yield函数下面的代码段,但是这个是做不到的,因为C的堆栈在Lua虚拟机中已经无从查找了!因此lua提供了续点函数来间接处理这个难题,你可以在lua_pcallk或者lua_callk中传入一个k函数,也就是续点函数,当你的调用中某个yield被resume唤醒的时候,由于并不能够回到这个C函数中继续执行,但是他回到你提供的k函数,让你作为一个中间的跳板做一下事情!这就是续点函数。lua_pcallk和lua_callk函数不能在最外层调用的,还是上面提到的这个问题,最外层的函数调用如果不是用lua_resume发起的话就会出现上面提到的错误。其实这个也好理解,因为你的函数中含有yield相关的代码段,因此你的function就是allowyield的,但是通过lua_pcallk和lua_callk实际上调用的都是luaD_call不允许allowyield的版本。
LUA_API void lua_callk (lua_State *L, int nargs, int nresults, lua_KContext ctx, lua_KFunction k) { StkId func; lua_lock(L); api_check(L, k == NULL || !isLua(L->ci), "cannot use continuations inside hooks"); api_checknelems(L, nargs+1); api_check(L, L->status == LUA_OK, "cannot do calls on non-normal thread"); checkresults(L, nargs, nresults); func = L->top - (nargs+1); if (k != NULL && L->nny == 0) { /* need to prepare continuation? */ L->ci->u.c.k = k; /* save continuation */ L->ci->u.c.ctx = ctx; /* save context */ luaD_call(L, func, nresults, 1); /* do the call */ //yield版本 } else /* no continuation or no yieldable */ luaD_call(L, func, nresults, 0); /* just do the call */ //notyield版本 adjustresults(L, nresults); lua_unlock(L); }
也许大家会有疑问,我传入了k函数,为什么不是调用yield版本,原因就在于L->nny这个值在luaState初始化的时候就不是0而是1,因此总会进noyield的版本。而用lua_resume的时候发起函数调用的时候,在lua_resume这个函数一开始就将L->nny重置为0,所以在lua_resume的外层保护下,lua_pcallk和luacallk能够顺利进入yield版本。
//这里已经调整好参数和函数位置, p3,p2,p1,func.errfunc 为栈上从上而下的排布 LUA_API int lua_pcallk (lua_State *L, int nargs, int nresults, int errfunc, lua_KContext ctx, lua_KFunction k) { struct CallS c; int status; ptrdiff_t func; lua_lock(L); api_check(L, k == NULL || !isLua(L->ci), "cannot use continuations inside hooks"); api_checknelems(L, nargs+1); api_check(L, L->status == LUA_OK, "cannot do calls on non-normal thread"); checkresults(L, nargs, nresults); if (errfunc == 0) func = 0; else { StkId o = index2addr(L, errfunc); api_checkstackindex(L, errfunc, o); func = savestack(L, o); } c.func = L->top - (nargs+1); /* function to be called */ //指向函数位置 if (k == NULL || L->nny > 0) { /* no continuation or no yieldable? */ c.nresults = nresults; /* do a ‘conventional‘ protected call */ status = luaD_pcall(L, f_call, &c, savestack(L, c.func), func); //调用f_call } else { /* prepare continuation (call is already protected by ‘resume‘) */ CallInfo *ci = L->ci; ci->u.c.k = k; /* save continuation */ ci->u.c.ctx = ctx; /* save context */ /* save information for error recovery */ ci->extra = savestack(L, c.func); ci->u.c.old_errfunc = L->errfunc; L->errfunc = func; setoah(ci->callstatus, L->allowhook); /* save value of ‘allowhook‘ */ ci->callstatus |= CIST_YPCALL; /* function can do error recovery */ luaD_call(L, c.func, nresults, 1); /* do the call */ ci->callstatus &= ~CIST_YPCALL; L->errfunc = ci->u.c.old_errfunc; status = LUA_OK; /* if it is here, there were no errors */ } adjustresults(L, nresults); lua_unlock(L); return status; }
下面是一个测试代码用于验证上面的结论,注释部分是不可运行因为外层直接使用lua_pcallk进行函数调用。
#include <stdio.h> #include <string.h> #include <lua.h> #include <lauxlib.h> #include <lualib.h> #include <dlfcn.h> #include <math.h> static int cont(lua_State *L, int status, lua_KContext ctx) { printf("error occurred!!\n"); return 0; } static int pcall_test(lua_State *L) { return lua_yield(L,0); } static int mytest(lua_State *L) { printf("mytest\n"); lua_pushcfunction(L, pcall_test); int ret = lua_pcallk(L, 0, 0, 0, 0, cont); return 1; } int main(void) { lua_State *L = luaL_newstate(); luaL_openlibs(L); lua_pushcfunction(L, mytest); //lua_pushcfunction(L, pcall_test); //lua_callk(L, 0, 0, 0, cont); /*if(ret != 0) { const char* err = luaL_checkstring(L, -1); //err : attempt to yield from outside a coroutine printf("%s\n", err); }*/ //lua_resume(L, NULL, 0); int ret = lua_resume(L, NULL, 0); if((ret!=LUA_OK) && (ret!=LUA_YIELD)) { const char* err = luaL_checkstring(L, -1); printf("%s\n", err); return; } ret = lua_resume(L, NULL, 0); lua_close(L); return 0; }
标签:
原文地址:http://www.cnblogs.com/biyeqingfeng/p/4978714.html