码迷,mamicode.com
首页 > 其他好文 > 详细

MapReduce实现单表链接

时间:2015-11-22 20:23:25      阅读:406      评论:0      收藏:0      [点我收藏+]

标签:

单表关联

实例中给出child-parent(孩子——父母)表,要求输出grandchild-grandparent(孙子——爷奶)表。

file:

child        parent
Tom        Lucy
Tom        Jack
Jone        Lucy
Jone        Jack
Lucy        Mary
Lucy        Ben
Jack        Alice
Jack        Jesse
Terry        Alice
Terry        Jesse
Philip        Terry
Philip        Alma
Mark        Terry
Mark        Alma

设计思路

MapReduce的shuffle过程会将相同的key会连接在一起,所以可以将map结果的key设置成待连接列。要连接的是左表的parent列和右表的child列,且左表和右表是同一个表,所以在map阶段读入数据分割childparent之后,会将parent设置成keychild设置成value进行输出,并作为左表;再将同一对childparent中的child设置成keyparent设置成value进行输出,作为右表。为了区分输出中的左右表,需要在输出的value加上左右表信息,比如在value的String最开始处加上字符1表示左表,加上字符2表示右表。这样在map的结果中就形成了左表和右表,然后在shuffle过程中完成连接。reduce接收到连接的结果,其中每个key的value-list就包含了"grandchild--grandparent"关系。取出每个key的value-list进行解析,将左表中的child放入一个数组右表中的parent放入一个数组,然后对两个数组求笛卡尔积就是最后的结果了。

代码实现

Mapper类

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils;

public class MyMapper  extends Mapper<LongWritable, Text, Text, Text>{

    private Text k = new Text();
    private Text v = new Text();
    @Override
    protected void map(LongWritable key, Text value,
            Mapper<LongWritable, Text, Text, Text>.Context context)
            throws IOException, InterruptedException {
        String line = value.toString();
        String[] tmp = line.split(" +");
        if(tmp.length>0){
            if(tmp[0].equals("child") && tmp[1].equals("parent")) return;
            k.set(tmp[0]);
            v.set(tmp[1]+"1");
            context.write(k,v);
            k.set(tmp[1]);
            v.set(tmp[0]+"2");
            context.write(k, v);
        }
        
        
    }
}

Reducer 类

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MyReducer extends Reducer<Text, Text, Text, Text>{
    
    private Text k = new Text();
    private Text v = new Text();
    
    @Override
    protected void setup(Reducer<Text, Text, Text, Text>.Context context)
            throws IOException, InterruptedException {
        context.write(new Text("grandChild"), new Text("grandParent"));
        
    }
    @Override
    protected void reduce(Text key, Iterable<Text> value,Context context) throws IOException,
            InterruptedException {
        List<String> child = new ArrayList<String>();
        List<String> grand = new ArrayList<String>();
        for(Text val : value){
            String str = val.toString();
            String stf = str.substring(str.length()-1);
            String con = str.substring(0, str.length()-1);
            int flag = Integer.parseInt(stf) ;
            if(flag == 1){
                grand.add(con);
            }else if(flag == 2){
                child.add(con);
            }
        }
        for(int i = 0;i<child.size();i++){
            k.set(child.get(i));
            for(int j=0; j<grand.size();j++){
                v.set(grand.get(j));
                context.write(k,v);
            }
        }
    }
}

Job驱动类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FamliyShip {

    public static void main(String[] args) throws Exception{
    
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        
        job.setJarByClass(FamliyShip.class);
        job.setMapperClass(MyMapper.class);
        job.setReducerClass(MyReducer.class);
        
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        
        FileInputFormat.addInputPath(job, new Path("hdfs://localhost:9000/usr/qqx/familyinput"));
        FileOutputFormat.setOutputPath(job, new Path("hdfs://localhost:9000/usr/qqx/familyoutput"));

        System.exit(job.waitForCompletion(true)?0:1);
    }

}

 

MapReduce实现单表链接

标签:

原文地址:http://www.cnblogs.com/qiaoqianxiong/p/4986506.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!