俗话说的好:工欲善其事,必先利其器!一款好的工具可以让你事半功倍,尤其是在大数据时代,更需要强有力的工具通过使数据有意义的方式实现数据可视化,还有数据的可交互性;我们还需要跨学科的团队,而不是单个数据科学家、设计师或数据分析员;我们更需要重新思考我们所知道的数据可视化,图表和图形还只能在一个或两个维度上传递信息, 那么他们怎样才能与其他维度融合到一起深入挖掘大数据呢?此时就需要倚仗大数据可视化(BDV)工具,因此,笔者收集了适合各个平台各种行业的多个图表和报表工具,这些工具中不乏有适用于NET、Java、Flash、HTML5、Flex等平台的,也不乏有适用于常规图表报表、甘特图、流程图、金融图表、工控图表、数据透视表、OLAP多维分析等图表报表开发的。为了进一步让大家了解如何选择适合的数据可视化产品,本文将围绕这一话题展开,希望能对正在选型中的企业有所帮助。下面就来看看全球备受欢迎的的可视化工具都有哪些吧!
Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。
Google Chart提供了一种非常完美的方式来可视化数据,提供了大量现成的图标类型,从简单的线图表到复杂的分层树地图等。它还内置了动画和用户交互控制。
D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。
R语言是主要用于统计分析、绘图的语言和操作环境。虽然R主要用于统计分析或者开发统计相关的软件,但也有用作矩阵计算。其分析速度可比美GNUOctave甚至商业软件MATLAB。
如果你需要制作信息图而不仅仅是数据可视化,Visual.ly是最流行的一个选择。
Processing是数据可视化的招牌工具。你只需要编写一些简单的代码,然后编译成Java。Processing可以在几乎所有平台上运行。
Leaflet是一个开源的JavaScript库,用来开发移动友好地交互地图。
Openlayers可能是所有地图库中可靠性最高的一个。虽然文档注释并不完善。且学习曲线非常陡峭,但是对于特定的任务来说,Openlayers能够提供一些其他地图库都没有的特殊工具。
PolyMaps是一个地图库,主要面向数据可视化用户。PolyMaps在地图风格化方面有独到之处,类似CSS样式表的选择器。
Charting Fonts是将符号字体与字体整合(把符号变成字体),创建出漂亮的矢量化图标。
Gephi是进行社会图谱数据可视化分析的工具,不但能处理大规模数据集并且Gephi是一个可视化的网络探索平台,用于构建动态的、分层的数据图表。
CartoDB是一个不可错过的网站,你可以用CartoDB很轻易就把表格数据和地图关联起来,这方面CartoDB是最优秀的选择。
Weka是一个能根据属性分类和集群大量数据的优秀工具,Weka不但是数据分析的强大工具,还能生成一些简单的图表。
NodeBox是OS X上创建二维图形和可视化的应用程序,你需要了解Python程序,NodeBox与Processing类似,但没有Processing的互动功能。
本文参考自codegeekz 转载请注明转载自慧都控件网
原文地址:http://10765427.blog.51cto.com/10755427/1715967