码迷,mamicode.com
首页 > 其他好文 > 详细

Project Euler 88:Product-sum numbers 积和数

时间:2015-11-29 17:51:10      阅读:263      评论:0      收藏:0      [点我收藏+]

标签:

Product-sum numbers

A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, {a1, a2, … , ak} is called a product-sum number: N = a1 + a2 + … + ak = a1 × a2 × … × ak.

For example, 6 = 1 + 2 + 3 = 1 × 2 × 3.

For a given set of size, k, we shall call the smallest N with this property a minimal product-sum number. The minimal product-sum numbers for sets of size, k = 2, 3, 4, 5, and 6 are as follows.

k=2: 4 = 2 × 2 = 2 + 2
k=3: 6 = 1 × 2 × 3 = 1 + 2 + 3
k=4: 8 = 1 × 1 × 2 × 4 = 1 + 1 + 2 + 4
k=5: 8 = 1 × 1 × 2 × 2 × 2 = 1 + 1 + 2 + 2 + 2
k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 + 1 + 1 + 1 + 2 + 6

Hence for 2≤k≤6, the sum of all the minimal product-sum numbers is 4+6+8+12 = 30; note that 8 is only counted once in the sum.

In fact, as the complete set of minimal product-sum numbers for 2≤k≤12 is {4, 6, 8, 12, 15, 16}, the sum is 61.

What is the sum of all the minimal product-sum numbers for 2≤k≤12000?


积和数

若自然数N能够同时表示成一组至少两个自然数{a1, a2, … , ak}的积和和,也即N = a1 + a2 + … + ak = a1 × a2 × … × ak,则N被称为积和数。

例如,6是积和数,因为6 = 1 + 2 + 3 = 1 × 2 × 3。

给定集合的规模k,我们称满足上述性质的最小N值为最小积和数。当k = 2、3、4、5、6时,最小积和数如下所示:

k=2: 4 = 2 × 2 = 2 + 2
k=3: 6 = 1 × 2 × 3 = 1 + 2 + 3
k=4: 8 = 1 × 1 × 2 × 4 = 1 + 1 + 2 + 4
k=5: 8 = 1 × 1 × 2 × 2 × 2 = 1 + 1 + 2 + 2 + 2
k=6: 12 = 1 × 1 × 1 × 1 × 2 × 6 = 1 + 1 + 1 + 1 + 2 + 6

因此,对于2≤k≤6,所有的最小积和数的和为4+6+8+12 = 30;注意8只被计算了一次。

已知对于2≤k≤12,所有最小积和数构成的集合是{4, 6, 8, 12, 15, 16},这些数的和是61。

对于2≤k≤12000,所有最小积和数的和是多少?

解题

 k个数的和 == k个数的积

求对应k时候最小的这个数

题目要求2≤k≤12000,时候的最小积数和的和

参考题解中的程序,详解程序注释

Java

package Level3;


import java.util.Set;
import java.util.TreeSet;

public class PE088{
    static void run(){
        int Kmin = 2;
        int Kmax = 12000;
        int sum = 0;
        Set<Integer> set = new TreeSet<Integer>();
        for(int k=Kmin;k<=Kmax;k++){
            int minN = getMin(k);
            if(set.add(minN))
                sum+=minN;
        }
        System.out.println(sum);
    }
    // 找出k对于最小的n
    static int getMin(int k){
        for(int n=k+1;;n++){
            if(check(n,n,k))
                return n;
        }
    }
    // 一个数拆成成k个数的和或者k个数的积 
    // prod 乘
    // sum 和 
    // 开始的时候这两个数是相等的  都是 prod 或者sum 拆分成k份 
    
//    这里用到的是递归的方法,当 prod2 = prod1 * a ;sum2 = sum1- a 
//            下面就可以检测下一轮了 check(prod2,sum2,k-1)
//    这里用递归也是因为可能出  8 = 2*2*2*1*1 = 2+2+2+1+1  的形式,乘子中有数相同 的情况
//    结束情况: 乘子是1的时候  sum == k k个1的和就是sum了
//     k=1的时候  说明结束了 return prod == sum 
//    下次递归可进行需要:d<= prod  k-1<= sum-d 下面程序很显然的 
    static boolean check(int prod,int sum,int k){
        if(sum <k) return false;
        if(prod == 1) return sum==k;
        if(k==1) return prod ==sum;
        for(int d =2;d<= prod && sum-d>=k-1;d++){
            if(prod%d==0){
                if(check(prod/d,sum-d,k-1)) 
                    return true;
            }
        }
        return false;
    }
//    7587457
//    running time=1s577ms
    public static void main(String[] args){
        long t0 = System.currentTimeMillis();
        run();
        long t1 = System.currentTimeMillis();
        long t = t1 - t0;
        System.out.println("running time="+t/1000+"s"+t%1000+"ms");

    }
}

参考链接

n[k]表示minimal product-sum numbers for size=k

n[k]的上界为2*k,因为2*k总是能分解成2*k,然后2*k=k+2+(1)*(k-2)

显然n[k]的下界为k

对于一个数num   因式分解后因子个数为product   这些因子的和为sump

则需要添加的1的个数为num-sump,所以size k=num-sump+product

===============================================

上面说的很好理解

在对于因式分解中

n[k] 是 一个数分解成k个数的和  、k个数的积的最小值

我上面链接中的程序的理解是通过因式分解,不断的缩小n[k]处的值,最终的值就是最小的,但是程序后面的递归理解不透。。。

# coding=gbk

import time as time 
def run2():
    kMax = 12000
    n = [2*kMax for i in range(kMax)]

    def getpsn(num,sump,product,start):
        k = num - sump + product
        if k < kMax:
            if num<n[k]:
                n[k] = num
            for i in range(start,kMax//num *2):
                getpsn(num*i,sump+i,product + 1,i)
    getpsn(1,1,1,2)
    ans = sum(set(n[2:]))
    print ans 
# 7587457
# running time= 0.266000032425 s
def run():
    kMin = 2
    kMax = 12000
    res=[]
    for k in range(kMin,kMax+1):
        minN = getMinN(k)
        if minN not in res:
            res.append(minN)
    print sum(minN)
           
def getMinN(k):
    n = k + 1
    while(True):
        if check(n,n,k):
            return n 
        n +=1
        
def check(prod,sum,k):
    if sum<k : return False
    if prod == 1:return sum==k 
    if k==1 :return prod ==sum
    for d in range(2,prod):
        if sum-d>=k-1 and prod%d ==0:
            if check(prod/d,sum-d,k-1):
                return True 
    return False

t0 = time.time()
run2() 
t1 = time.time()
print "running time=",(t1-t0),"s"


            

 

Project Euler 88:Product-sum numbers 积和数

标签:

原文地址:http://www.cnblogs.com/theskulls/p/5002988.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!