标签:
Consider the set of all reduced fractions between 0 and 1 inclusive with denominators less than or equal to N.
Here is the set when N = 5:
0/1 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 1/1
Write a program that, given an integer N between 1 and 160 inclusive, prints the fractions in order of increasing magnitude.
One line with a single integer N.
5
One fraction per line, sorted in order of magnitude.
0/1 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 1/1
题目大意:就是说给定一个N,输出值在0到1之间的,分母在1到N之间的所有值不重复的分数(可以约分的需要约分)。
思路:很简单,因为数据量小,所以就是枚举分子分母,然后不要不是最简分数的分数,再排序。
1 /* 2 ID:fffgrdc1 3 PROB:frac1 4 LANG:C++ 5 */ 6 #include<cstdio> 7 #include<iostream> 8 #include<algorithm> 9 #include<cmath> 10 using namespace std; 11 int prime[100],primecnt=0; 12 bool bo[200]={0}; 13 struct str 14 { 15 int x;int y; 16 double ans; 17 }e[40000]; 18 bool kong(str aa,str bb) 19 { 20 return aa.ans<bb.ans; 21 } 22 bool check(int x,int y) 23 { 24 //int temp=sqrt(double (y)); 25 for(int i=1;i<=primecnt&&prime[i]<=y;i++) 26 { 27 if(!(y%prime[i])) 28 if(!(x%prime[i])) 29 return 0; 30 } 31 return 1; 32 } 33 int main() 34 { 35 freopen("frac1.in","r",stdin); 36 freopen("frac1.out","w",stdout); 37 int n; 38 scanf("%d",&n); 39 int anscnt=0; 40 bo[0]=bo[1]=1; 41 for(int i=2;i<200;i++) 42 { 43 if(!bo[i]) 44 { 45 prime[++primecnt]=i; 46 for(int j=2;j*i<200;j++) 47 { 48 bo[i*j]=1; 49 } 50 } 51 } 52 for(int i=1;i<=n;i++) 53 { 54 for(int j=1;j<i;j++) 55 { 56 if(check(j,i)) 57 { 58 e[++anscnt].x=j; 59 e[anscnt].y=i; 60 e[anscnt].ans=(j*1.0)/i; 61 } 62 } 63 } 64 sort(e+1,e+1+anscnt,kong); 65 printf("0/1\n"); 66 for(int i=1;i<=anscnt;i++) 67 { 68 printf("%d/%d\n",e[i].x,e[i].y); 69 } 70 printf("1/1\n"); 71 return 0; 72 }
check函数写的太烂了。。。WA了几发都是因为想优化它。本来是想到用GCD的,但是担心时间复杂度的问题,后来学长告诉我不用担心呀,而且甚至不用自己手写,algorithm里面有现成的。。。于是代码变成下面这样也A了,而且复杂度下降了。。。。惊了
1 /* 2 ID:fffgrdc1 3 PROB:frac1 4 LANG:C++ 5 */ 6 #include<cstdio> 7 #include<iostream> 8 #include<algorithm> 9 #include<cmath> 10 using namespace std; 11 int prime[100],primecnt=0; 12 bool bo[200]={0}; 13 struct str 14 { 15 int x;int y; 16 double ans; 17 }e[40000]; 18 bool kong(str aa,str bb) 19 { 20 return aa.ans<bb.ans; 21 } 22 bool check(int x,int y) 23 { 24 return __gcd(x,y)==1; 25 } 26 int main() 27 { 28 freopen("frac1.in","r",stdin); 29 freopen("frac1.out","w",stdout); 30 int n; 31 scanf("%d",&n); 32 int anscnt=0; 33 bo[0]=bo[1]=1; 34 for(int i=2;i<200;i++) 35 { 36 if(!bo[i]) 37 { 38 prime[++primecnt]=i; 39 for(int j=2;j*i<200;j++) 40 { 41 bo[i*j]=1; 42 } 43 } 44 } 45 for(int i=1;i<=n;i++) 46 { 47 for(int j=1;j<i;j++) 48 { 49 if(check(j,i)) 50 { 51 e[++anscnt].x=j; 52 e[anscnt].y=i; 53 e[anscnt].ans=(j*1.0)/i; 54 } 55 } 56 } 57 sort(e+1,e+1+anscnt,kong); 58 printf("0/1\n"); 59 for(int i=1;i<=anscnt;i++) 60 { 61 printf("%d/%d\n",e[i].x,e[i].y); 62 } 63 printf("1/1\n"); 64 return 0; 65 }
标签:
原文地址:http://www.cnblogs.com/xuwangzihao/p/5005682.html