标签:
在JDK1.6中,HashMap采用位桶+链表实现,即使用链表处理冲突,同一hash值的Entity都存储在一个链表里。但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8(JDK版本号为:1.8.0_25)中,HashMap采用位桶+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间(查找时间复杂度由O(n)变为O(lgn))。
1、涉及到的数据结构:处理hash冲突的链表和红黑树以及位桶
//Node是单向链表,它实现了Map.Entry接口 static class Node<k,v> implements Map.Entry<k,v> { final int hash; final K key; V value; Node<k,v> next; //构造函数Hash值 键 值 下一个节点 Node(int hash, K key, V value, Node<k,v> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + = + value; } public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } //判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry e = (Map.Entry)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } }
//红黑树 static final class TreeNode<k,v> extends LinkedHashMap.Entry<k,v> { TreeNode<k,v> parent; // 父节点 TreeNode<k,v> left; //左子树 TreeNode<k,v> right;//右子树 TreeNode<k,v> prev; // needed to unlink next upon deletion boolean red; //颜色属性 TreeNode(int hash, K key, V val, Node<k,v> next) { super(hash, key, val, next); } //返回当前节点的根节点 final TreeNode<k,v> root() { for (TreeNode<k,v> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } }
transient Node<k,v>[] table;//存储(位桶)的数组
有了以上3个数据结构,只要有一点数据结构基础的人,都可以大致联想到HashMap的实现了。首先有一个每个元素都是链表(可能表述不准确)的数组,当添加一个元素(key-value)时,就首先计算元素key的hash值,以此确定插入元素在桶中的位置,但是可能存在同一hash值的元素已经被放在数组同一位置了,这时通过equals方法比较新插入Key值与原Key值,如果Key值相同,那么就用新插入元素的Entity替换原Entity值;如果Key值不同,那么就形成链表的方式来存放这些新插入的数据。而当链表长度太长时,链表就转换为红黑树,这样大大提高了查找的效率。
2、HashMap主要属性
说一下填充因子,默认值为0.75,如果实际元素所占容量占分配容量的75%时就要扩容了。如果填充比很大,说明利用的空间很多,但是查找的效率很低,因为链表的长度很大(当然最新版本使用了红黑树后会改进很多),HashMap本来是以空间换时间,所以填充比没必要太大。但是填充比太小又会导致空间浪费。如果关注内存,填充比可以稍大,如果主要关注查找性能,填充比可以稍小。
public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量 static final float DEFAULT_LOAD_FACTOR = 0.75f;//填充比 //当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树 static final int TREEIFY_THRESHOLD = 8; static final int UNTREEIFY_THRESHOLD = 6; static final int MIN_TREEIFY_CAPACITY = 64; transient Node<k,v>[] table;//存储元素的数组 transient Set<map.entry<k,v>> entrySet; transient int size;//存放元素的个数 transient int modCount;//被修改的次数fast-fail机制 int threshold;//临界值 当实际大小(容量*填充比)超过临界值时,会进行扩容 final float loadFactor;//填充比(......后面略)
3、构造方法
HashMap的构造方法有4种,主要涉及到的参数有,指定初始容量,指定填充比和用来初始化的Map,直接看代码
/* - Public operations -- */ //构造函数1 public HashMap(int initialCapacity, float loadFactor) { //指定的初始容量非负 if (initialCapacity < 0) throw new IllegalArgumentException(Illegal initial capacity: + initialCapacity); //如果指定的初始容量大于最大容量,置为最大容量 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; //填充比为正 if (loadFactor <= 0 Float.isNaN(loadFactor)) throw new IllegalArgumentException(Illegal load factor: + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity);//新的扩容临界值 } //构造函数2 public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } //构造函数3 public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } //构造函数4用m的元素初始化散列映射 public HashMap(Map m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); }
4、 扩容机制
构造hash表时,如果不指明初始大小,默认大小为16(即Node数组大小16),如果Node[]数组中的元素达到(填充比*Node.length)
//可用来初始化HashMap大小 或重新调整HashMap大小 变为原来2倍大小 final Node<k,v>[] resize() { Node<k,v>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) {//超过1>>30大小,无法扩容只能改变 阈值 threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)//新的容量为旧的2倍 最小也是16 newThr = oldThr << 1; // 扩容阈值加倍 } else if (oldThr > 0) newCap = oldThr;//oldCap=0 ,oldThr>0此时newThr=0 else { //oldCap=0,oldThr=0 相当于使用默认填充比和初始容量 初始化 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({rawtypes,unchecked}) Node<k,v>[] newTab = (Node<k,v>[])new Node[newCap]; //数组辅助到新的数组中,分红黑树和链表讨论 table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<k,v> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<k,v>)e).split(this, newTab, j, oldCap); else { // preserve order Node<k,v> loHead = null, loTail = null; Node<k,v> hiHead = null, hiTail = null; Node<k,v> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
很明显,因为存在旧数组元素到新数组中的操作,扩容非常耗时。
5 、确定元素put/get的数组Node[]位置
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
public native int hashCode();
首先由key值通过hash(key)获取hash值h,再通过 h&(length-1)得到所在数组位置。一般对于哈希表的散列常用的方法有直接定址法,除留余数法等,既要便于计算,又能减少冲突。
在Hashtable中就是通过除留余数法散列分布的,具体如下:
int index = (hash & 0x7FFFFFFF) % tab.length;
但是取模中的除法运算效率很低,HashMap则通过h&(length-1)替代取模,得到所在数组位置,这样效率会高很多。
在HashMap实现中还可以看到如下代码取代了以前版本JDK1.6的while循环来保证哈希表的容量一直是2的整数倍数,用移位操作取代了循环移位。
//这段代码保证HashMap的容量总是2的n次方 static final int tableSizeFor(int cap) { int n = cap - 1; n = n >>> 1; n = n >>> 2; n = n >>> 4; n = n >>> 8; n = n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
可以从源码看出,在HashMap的构造函数中,都直接或间接的调用了tableSizeFor函数。下面分析原因:length为2的整数幂保证了length-1最后一位(当然是二进制表示)为1,从而保证了取索引操作 h&(length-1)的最后一位同时有为0和为1的可能性,保证了散列的均匀性。反过来讲,当length为奇数时,length-1最后一位为0,这样与h按位与的最后一位肯定为0,即索引位置肯定是偶数,这样数组的奇数位置全部没有放置元素,浪费了大量空间。
简而言之:length为2的幂保证了按位与最后一位的有效性,使哈希表散列更均匀。
6、下面分析HashMap的最常用操作put和get
注意HashMap中key和value都容许为null
直接上代码:
//***********************************get***************************************************/ public V get(Object key) { Node<k,v> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<k,v> getNode(int hash, Object key) { Node<k,v>[] tab; Node<k,v> first, e; int n; K k; //hash & (length-1)得到对象的保存位 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { //如果第一个节点是TreeNode,说明采用的是数组+红黑树结构处理冲突 //遍历红黑树,得到节点值 if (first instanceof TreeNode) return ((TreeNode<k,v>)first).getTreeNode(hash, key); //链表结构处理 do { if (e.hash == hash && ((k = e.key) == key (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
//************************put********************************************************************* public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<k,v>[] tab; Node<k,v> p; int n, i; //如果tab为空或长度为0,则分配内存resize() if ((tab = table) == null (n = tab.length) == 0) n = (tab = resize()).length; //(n - 1) & hash找到put位置,如果为空,则直接put if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<k,v> e; K k; //第一节节点hash值同,且key值与插入key相同 if (p.hash == hash &&((k = p.key) == key (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode)//属于红黑树处理冲突 e = ((TreeNode<k,v>)p).putTreeVal(this, tab, hash, key, value); else { //链表处理冲突 for (int binCount = 0; ; ++binCount) { //p第一次指向表头,以后依次后移 if ((e = p.next) == null) { //e为空,表示已到表尾也没有找到key值相同节点,则新建节点 p.next = newNode(hash, key, value, null); //新增节点后如果节点个数到达阈值,则将链表转换为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } //容许null==null if (e.hash == hash &&((k = e.key) == key (key != null && key.equals(k)))) break; p = e;//更新p指向下一个节点 } } //更新hash值和key值均相同的节点Value值 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
下面简单说下添加键值对put(key,value)的过程:(事实上,直接看代码逻辑更清晰些)
1、判断键值对数组tab[]是否为空或为null,否则resize();
2、根据键值key计算hash值得到插入的数组索引i,如果tab[i]==null,直接新建节点添加,否则转入3
3、判断当前数组中处理hash冲突的方式为链表还是红黑树(check第一个节点类型即可),分别处理。
参考链接:http://www.125135.com/588285.htm
标签:
原文地址:http://www.cnblogs.com/moonandstar08/p/5005778.html