标签:
题目:
Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are+
, -
and *
.
Example 1
Input: "2-1-1"
.
((2-1)-1) = 0 (2-(1-1)) = 2
Output: [0, 2]
Example 2
Input: "2*3-4*5"
(2*(3-(4*5))) = -34 ((2*3)-(4*5)) = -14 ((2*(3-4))*5) = -10 (2*((3-4)*5)) = -10 (((2*3)-4)*5) = 10
Output: [-34, -14, -10, -10, 10]
链接: http://leetcode.com/problems/different-ways-to-add-parentheses/
题解:
这题说是Different Ways to add parentheses,其实意思就是忽略运算符的优先级来计算算式。对此我们的解法是: 在算式valid的条件下,只要遇到运算符,我们就计算出左侧的数和右侧的数,然后根据这个运算符来得到结果。看discuss的时候发现Stefan Pochmann大神的解法...一行,擦,这哥们魔方还玩得很好,据说得过德国魔方比赛第一,是真牛。
Time Complexity - O(3n), Space Complexity - O(3n)
public class Solution { public List<Integer> diffWaysToCompute(String input) { if(input == null || input.length() == 0) return new ArrayList<Integer>(); List<Integer> res = new ArrayList<>(); for(int i = 0; i < input.length(); i++) { char c = input.charAt(i); if(c == ‘+‘ || c == ‘*‘ || c == ‘-‘) { List<Integer> l1 = diffWaysToCompute(input.substring(0, i)); List<Integer> l2 = diffWaysToCompute(input.substring(i + 1)); for( int x : l1) { for(int y : l2) { if(c == ‘+‘) res.add(x + y); else if(c == ‘-‘) res.add(x - y); else res.add(x * y); } } } } if(res.size() == 0) res.add(Integer.valueOf(input)); return res; } }
Reference:
https://leetcode.com/discuss/48468/1-11-lines-python-9-lines-c
https://leetcode.com/discuss/60626/share-a-clean-and-short-java-solution
https://leetcode.com/discuss/53566/python-easy-to-understand-solution-divide-and-conquer
https://leetcode.com/discuss/61840/java-recursive-9ms-and-dp-4ms-solution
https://leetcode.com/discuss/48477/a-recursive-java-solution-284-ms
https://leetcode.com/discuss/48488/c-4ms-recursive-%26-dp-solution-with-brief-explanation
https://leetcode.com/discuss/48494/what-is-the-time-complexity-of-divide-and-conquer-method
https://leetcode.com/discuss/55255/clean-ac-c-solution-with-explanation
241. Different Ways to Add Parentheses
标签:
原文地址:http://www.cnblogs.com/yrbbest/p/5006196.html