标签:style http color os width io
题意:给定一个n*n的矩阵A和k,求∑kiAi
思路:利用倍增去搞,∑kiAi=(1+Ak/2)∑k/2iAi,不断二分即可
代码:
#include <cstdio> #include <cstring> const int N = 45; int n, k; struct mat { int v[N][N]; mat() {memset(v, 0, sizeof(v));} mat operator * (mat c) { mat ans; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { ans.v[i][j] = (ans.v[i][j] + v[i][k] * c.v[k][j]) % 10; } } } return ans; } mat operator + (mat c) { mat ans; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) ans.v[i][j] = (v[i][j] + c.v[i][j]) % 10; return ans; } } A; mat pow_mod(mat x, int k) { mat ans; for (int i = 0; i < n; i++) ans.v[i][i] = 1; while (k) { if (k&1) ans = ans * x; x = x * x; k >>= 1; } return ans; } mat solve(mat x, int k) { if (k == 1) return x; mat ans; for (int i = 0; i < n; i++) ans.v[i][i] = 1; if (k == 0) return ans; ans = (ans + pow_mod(x, k>>1))* solve(x, k>>1); if (k&1) ans = ans + pow_mod(x, k); return ans; } int main() { while (~scanf("%d%d", &n, &k) && n) { for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) { scanf("%d", &A.v[i][j]); A.v[i][j] %= 10; } A = solve(A, k); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) printf("%d%c", A.v[i][j], (j == n - 1 ? '\n' : ' ')); printf("\n"); } return 0; }
UVA 11149 - Power of Matrix(矩阵倍增),布布扣,bubuko.com
UVA 11149 - Power of Matrix(矩阵倍增)
标签:style http color os width io
原文地址:http://blog.csdn.net/accelerator_/article/details/37994841