码迷,mamicode.com
首页 > 其他好文 > 详细

求N!末尾的0的个数--找规律+递归

时间:2014-07-20 23:18:11      阅读:281      评论:0      收藏:0      [点我收藏+]

标签:des   style   http   java   color   数据   

0\‘s

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描述

计算整数n!(n的阶乘)末尾有多少个0。

输入

第一行输入一个数T代表测试数据个数(T<=20)。接下来T行每行1个数代表n(0<=n< 2^31)。

输出

对于每个测试数据输n!末尾有多少个0,每行输出一个结果。

示例输入

3
1
5
10

示例输出

0
1
2

提示

  中国海洋大学第三届“朗讯杯”编程比赛高级组试题
 声明(摘抄至某前辈)---------------------
 
这里先给出其计算公式,后面给出推导过程。
    令f(x)表示正整数x末尾所含有的“0”的个数,则有:
      当0 < n < 5时,f(n!) = 0;
      当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。


问题分析
    显然,对于阶乘这个大数,我们不可能将其结果计算出来,再统计其末尾所含有的“0”的个数。所以必须从其数字特征进行分析。下面我们从因式分解的角度切入分析。

    我们先考虑一般的情形。对于任意一个正整数,若对其进行因式分解,那么其末尾的“0”必可以分解为2*5。在这里,每一个“0”必然和一个因子“5”相对应。但请注意,一个数的因式分解中因子“5”不一定对应着一个“0”,因为还需要一个因子“2”,才能实现其一一对应。

    我们再回到原先的问题。这里先给出一个结论:
    结论1: 对于n的阶乘n!,其因式分解中,如果存在一个因子“5”,那么它必然对应着n!末尾的一个“0”。
    下面对这个结论进行证明:
    (1)当n < 5时, 结论显然成立。
    (2)当n >= 5时,令n!= [5k * 5(k-1) * ... * 10 * 5] * a,其中 n = 5k + r (0 <= r <= 4),a是一个不含因子“5”的整数。
    对于序列5k, 5(k-1), ..., 10, 5中每一个数5i(1 <= i <= k),都含有因子“5”,并且在区间(5(i-1),5i)(1 <= i <= k)内存在偶数,也就是说,a中存在一个因子“2”与5i相对应。即,这里的k个因子“5”与n!末尾的k个“0”一一对应。
   我们进一步把n!表示为:n!= 5^k * k! * a(公式1),其中5^k表示5的k次方。很容易利用(1)和迭代法,得出结论1。
   
    上面证明了n的阶乘n!末尾的“0”与n!的因式分解中的因子“5”是一一对应的。也就是说,计算n的阶乘n!末尾的“0”的个数,可以转换为计算其因式分解中“5”的个数。

    令f(x)表示正整数x末尾所含有的“0”的个数, g(x)表示正整数x的因式分解中因子“5”的个数,则利用上面的的结论1和公式1有:
       f(n!) = g(n!) = g(5^k * k! * a) = k + g(k!) = k + f(k!)
所以,最终的计算公式为:
    当0 < n < 5时,f(n!) = 0;
    当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。

计算举例
   f(5!) = 1 + f(1!) = 1
   f(10!) = 2 + f(2!) = 2
   f(20!) = 4 + f(4!) = 4
   f(100!) = 20 + f(20!) = 20 + 4 + f(4!) = 24
   f(1000!) = 200 + f(200!) = 200 + 40 + f(40!) = 240 + 8 + f(8!) = 248 + 1 + f(1) =249
 
 

求N!末尾的0的个数--找规律+递归,布布扣,bubuko.com

求N!末尾的0的个数--找规律+递归

标签:des   style   http   java   color   数据   

原文地址:http://blog.csdn.net/qq_16255321/article/details/37994015

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!