码迷,mamicode.com
首页 > 其他好文 > 详细

deeplearning 源码收集

时间:2015-11-30 22:11:29      阅读:219      评论:0      收藏:0      [点我收藏+]

标签:

  1. Theano – CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal)
  2. Torch – provides a Matlab-like environment for state-of-the-art machine learning algorithms in lua (from Ronan Collobert, Clement Farabet and Koray Kavukcuoglu)
  3. Pylearn2 - Pylearn2 is a library designed to make machine learning research easy.
  4. Blocks - A Theano framework for training neural networks
  5. Tensorflow - TensorFlow™ is an open source software library for numerical computation using data flow graphs.
  6. MXNet - MXNet is a deep learning framework designed for both efficiency and flexibility.
  7. Caffe -Caffe is a deep learning framework made with expression, speed, and modularity in mind.Caffe is a deep learning framework made with expression, speed, and modularity in mind.
  8. Lasagne - Lasagne is a lightweight library to build and train neural networks in Theano.
  9. Keras- A theano based deep learning library.
  10. Deep Learning Tutorials – examples of how to do Deep Learning with Theano (from LISA lab at University of Montreal)
  11. DeepLearnToolbox – A Matlab toolbox for Deep Learning (from Rasmus Berg Palm)
  12. Cuda-Convnet – A fast C++/CUDA implementation of convolutional (or more generally, feed-forward) neural networks. It can model arbitrary layer connectivity and network depth. Any directed acyclic graph of layers will do. Training is done using the back-propagation algorithm.
  13. Deep Belief Networks. Matlab code for learning Deep Belief Networks (from Ruslan Salakhutdinov).
  14. RNNLM- Tomas Mikolov’s Recurrent Neural Network based Language models Toolkit.
  15. RNNLIB-RNNLIB is a recurrent neural network library for sequence learning problems. Applicable to most types of spatiotemporal data, it has proven particularly effective for speech and handwriting recognition.
  16. matrbm. Simplified version of Ruslan Salakhutdinov’s code, by Andrej Karpathy (Matlab).
  17. deeplearning4j- Deeplearning4J is an Apache 2.0-licensed, open-source, distributed neural net library written in Java and Scala.
  18. Estimating Partition Functions of RBM’s. Matlab code for estimating partition functions of Restricted Boltzmann Machines using Annealed Importance Sampling (from Ruslan Salakhutdinov).
  19. Learning Deep Boltzmann Machines Matlab code for training and fine-tuning Deep Boltzmann Machines (from Ruslan Salakhutdinov).
  20. The LUSH programming language and development environment, which is used @ NYU for deep convolutional networks
  21. Eblearn.lsh is a LUSH-based machine learning library for doing Energy-Based Learning. It includes code for “Predictive Sparse Decomposition” and other sparse auto-encoder methods for unsupervised learning. Koray Kavukcuoglu provides Eblearn code for several deep learning papers on this page.
  22. deepmat- Deepmat, Matlab based deep learning algorithms.
  23. MShadow - MShadow is a lightweight CPU/GPU Matrix/Tensor Template Library in C++/CUDA. The goal of mshadow is to support efficient, device invariant and simple tensor library for machine learning project that aims for both simplicity and performance. Supports CPU/GPU/Multi-GPU and distributed system.
  24. CXXNET - CXXNET is fast, concise, distributed deep learning framework based on MShadow. It is a lightweight and easy extensible C++/CUDA neural network toolkit with friendly Python/Matlab interface for training and prediction.
  25. Nengo-Nengo is a graphical and scripting based software package for simulating large-scale neural systems.
  26. Eblearn is a C++ machine learning library with a BSD license for energy-based learning, convolutional networks, vision/recognition applications, etc. EBLearn is primarily maintained by Pierre Sermanet at NYU.
  27. cudamat is a GPU-based matrix library for Python. Example code for training Neural Networks and Restricted Boltzmann Machines is included.
  28. Gnumpy is a Python module that interfaces in a way almost identical to numpy, but does its computations on your computer’s GPU. It runs on top of cudamat.
  29. The CUV Library (github link) is a C++ framework with python bindings for easy use of Nvidia CUDA functions on matrices. It contains an RBM implementation, as well as annealed importance sampling code and code to calculate the partition function exactly (from AIS labat University of Bonn).
  30. 3-way factored RBM and mcRBM is python code calling CUDAMat to train models of natural images (from Marc’Aurelio Ranzato).
  31. Matlab code for training conditional RBMs/DBNs and factored conditional RBMs (from Graham Taylor).
  32. mPoT is python code using CUDAMat and gnumpy to train models of natural images (from Marc’Aurelio Ranzato).
  33. neuralnetworks is a java based gpu library for deep learning algorithms.
  34. ConvNet is a matlab based convolutional neural network toolbox.

Theano

http://deeplearning.net/software/theano/

code from: http://deeplearning.net/

 

Deep Learning Tutorial notes and code

https://github.com/lisa-lab/DeepLearningTutorials

code from: lisa-lab

 

A Matlab toolbox for Deep Learning

https://github.com/rasmusbergpalm/DeepLearnToolbox

code from: RasmusBerg Palm

 

deepmat

Matlab Code for Restricted/Deep BoltzmannMachines and Autoencoder

https://github.com/kyunghyuncho/deepmat

code from: KyungHyun Cho http://users.ics.aalto.fi/kcho/

 

Training a deep autoencoder or a classifieron MNIST digits

http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

code from: Ruslan Salakhutdinov and GeoffHinton

 

CNN - Convolutional neural network class

http://www.mathworks.cn/matlabcentral/fileexchange/24291

Code from: matlab

 

Neural Network for Recognition ofHandwritten Digits (CNN)

http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi

 

cuda-convnet

A fast C++/CUDA implementation ofconvolutional neural networks

http://code.google.com/p/cuda-convnet/

 

matrbm

a small library that can train RestrictedBoltzmann Machines, and also Deep Belief Networks of stacked RBM‘s.

http://code.google.com/p/matrbm/

code from: Andrej Karpathy

 

Exercise  from UFLDL Tutorial:

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

and tornadomeet’s bolg: http://www.cnblogs.com/tornadomeet/tag/Deep%20Learning/

and https://github.com/dkyang/UFLDL-Tutorial-Exercise

 

Conditional Restricted Boltzmann Machines

http://www.cs.nyu.edu/~gwtaylor/publications/nips2006mhmublv/code.html

from Graham Taylor http://www.cs.nyu.edu/~gwtaylor/

 

Factored Conditional Restricted BoltzmannMachines

http://www.cs.nyu.edu/~gwtaylor/publications/icml2009/code/index.html

from Graham Taylor http://www.cs.nyu.edu/~gwtaylor/

 

Marginalized Stacked Denoising Autoencodersfor Domain Adaptation

http://www1.cse.wustl.edu/~mchen/code/mSDA.tar

code from: http://www.cse.wustl.edu/~kilian/code/code.html

 

Tiled Convolutional Neural Networks

http://cs.stanford.edu/~quocle/TCNNweb/pretraining.tar.gz

http://cs.stanford.edu/~pangwei/projects.html

 

tiny-cnn:

A C++11 implementation of convolutionalneural networks

https://github.com/nyanp/tiny-cnn

 

myCNN

https://github.com/aurofable/18551_Project/tree/master/server/2009-09-30-14-33-myCNN-0.07

 

Adaptive Deconvolutional Network Toolbox

http://www.matthewzeiler.com/software/DeconvNetToolbox2/DeconvNetToolbox.zip

http://www.matthewzeiler.com/

 

Deep Learning手写字符识别C++代码

http://download.csdn.net/detail/lucky_greenegg/5413211

from: http://blog.csdn.net/lucky_greenegg/article/details/8949578

 

convolutionalRBM.m

A MATLAB / MEX / CUDA-MEX implementation ofConvolutional Restricted Boltzmann Machines.

https://github.com/qipeng/convolutionalRBM.m

from: http://qipeng.me/software/convolutional-rbm.html

 

rbm-mnist

C++ 11 implementation of Geoff Hinton‘sDeep Learning matlab code

https://github.com/jdeng/rbm-mnist

 

Learning Deep Boltzmann Machines

http://web.mit.edu/~rsalakhu/www/code_DBM/code_DBM.tar

http://web.mit.edu/~rsalakhu/www/DBM.html

Code provided by Ruslan Salakhutdinov

 

Efficient sparse coding algorithms

http://web.eecs.umich.edu/~honglak/softwares/fast_sc.tgz

http://web.eecs.umich.edu/~honglak/softwares/nips06-sparsecoding.htm

 

Linear Spatial Pyramid Matching UsingSparse Coding for Image Classification

http://www.ifp.illinois.edu/~jyang29/codes/CVPR09-ScSPM.rar

http://www.ifp.illinois.edu/~jyang29/ScSPM.htm

 

SPAMS

(SPArse Modeling Software) is anoptimization toolbox for solving various sparse estimation problems.

http://spams-devel.gforge.inria.fr/

 

sparsenet

Sparse coding simulation software

http://redwood.berkeley.edu/bruno/sparsenet/

 

fast dropout training

https://github.com/sidaw/fastdropout

http://nlp.stanford.edu/~sidaw/home/start

 

Deep Learning of Invariant Features viaSimulated Fixations in Video

http://ai.stanford.edu/~wzou/deepslow_release.tar.gz

http://ai.stanford.edu/~wzou/

 

Sparse filtering

http://cs.stanford.edu/~jngiam/papers/NgiamKohChenBhaskarNg2011_Supplementary.pdf

 

k-means

http://www.stanford.edu/~acoates/papers/kmeans_demo.tgz

 

others:

http://deeplearning.net/software_links/

deeplearning 源码收集

标签:

原文地址:http://www.cnblogs.com/alexanderkun/p/5008412.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!