标签:
有了前面的准备,可以用Theano实现一个逻辑回归程序,逻辑回归是典型的有监督学习。
为了形象,这里我们假设分类任务是区分人与狗的照片。
首先是生成随机数对象
数据初始化
有400张照片,这些照片不是人的就是狗的。
每张照片是28*28=784的维度。
D[0]是训练集,是个400*784的矩阵,每一行都是一张照片。
D[1]是每张照片对应的标签,用来记录这张照片是人还是狗。
training_steps是迭代上限。
x是输入的训练集,是个矩阵,把D[0]赋值给它。
y是标签,是个列向量,400个样本所以有400维。把D[1]赋给它。
w是权重列向量,维数为图像的尺寸784维。
b是偏倚项向量,初始值都是0,这里没写成向量是因为之后要广播形式。
这里是函数的主干部分,涉及到3个公式
1.判定函数
2.代价函数
3.总目标函数
第二项是权重衰减项,减小权重的幅度,用来防止过拟合的。
构造预测和训练函数。
这里算过之后发现,经过10000次训练,预测结果与标签已经完全相同了。
标签:
原文地址:http://www.cnblogs.com/anyview/p/5014642.html