标签:
我们用python2.7实现上一篇的推导结果。请先安装python matplotlib包和numpy包。
具体代码如下:
#!/usr/bin/env python
#! -*- coding:utf-8 -*-
import matplotlib.pyplot as plt
from numpy import *
#创建数据集
def load_dataset():
n = 100
X = [[1, 0.005*xi] for xi in range(1, 100)]
Y = [2*xi[1] for xi in X]
return X, Y
#梯度下降法求解线性回归
def grad_descent(X, Y):
X = mat(X)
Y = mat(Y)
row, col = shape(X)
alpha = 0.001
maxIter = 5000
W = ones((1, col))
for k in range(maxIter):
W = W + alpha * (Y - W*X.transpose())*X
return W
def main():
X, Y = load_dataset()
W = grad_descent(X, Y)
print "W = ", W
#绘图
x = [xi[1] for xi in X]
y = Y
plt.plot(x, y, marker="*")
xM = mat(X)
y2 = W*xM.transpose()
y22 = [y2[0,i] for i in range(y2.shape[1]) ]
plt.plot(x, y22, marker="o")
plt.show()
if __name__ == "__main__":
main()
代码超级简单,load_dataset函数创建了一个y=2x的数据集,grad_descent函数求解优化问题。
在grad_descent里多了两个小东西,alpha是学习速率,一般取0.001~0.01,太大可能会导致震荡,求解不稳定。maxIter是最大迭代次数,它决定结果的精确度,通常是越大越好,但越大越耗时,所以通常需要试算以下,也可以另外写一个判定标准,比如当Y−WXT小于多少的时候就不再迭代。
我们来看一下效果:
当maxIter=5时,拟合结果是这样的:
如果maxIter=50,拟合结果是这样的:
如果maxIter=500,拟合结果是这样的:
如果maxIter=1000,拟合结果是这样的:
如果maxIter=5000,拟合结果是这样的:
5000次的结果几乎完美,两条曲线图形重合。就酱。
本篇到此结束,下一篇,我们开始把logistic函数加进来,推导logistic regression。
标签:
原文地址:http://www.cnblogs.com/developer-ios/p/5014887.html