- 描述
-
利用公式x1 = (-b + sqrt(b*b-4*a*c))/(2*a), x2 = (-b - sqrt(b*b-4*a*c))/(2*a)求一元二次方程ax2+ bx + c =0的根,其中a不等于0。
- 输入
- 输入一行,包含三个浮点数a, b, c(它们之间以一个空格分开),分别表示方程ax2 + bx + c =0的系数。
- 输出
- 输出一行,表示方程的解。
若两个实根相等,则输出形式为:x1=x2=...。
若两个实根不等,则输出形式为:x1=...;x2 = ...,其中x1<x2。
若是两个虚根,则输出:x1=实部+虚部i; x2=实部-虚部i,其中x1,x2满足以下两个条件中的一个:
1. x1的实部大于x2的实部
2. x1的实部等于x2的实部且x1的虚部大于等于x2的虚部
所有实数部分要求精确到小数点后5位,数字、符号之间没有空格。 - 样例输入
-
1.0 2.0 8.0
- 样例输出
-
x1=-1.00000+2.64575i;x2=-1.00000-2.64575i
- 来源
- 1709