码迷,mamicode.com
首页 > 其他好文 > 详细

欧几里得求最大公约数

时间:2015-12-05 20:49:08      阅读:134      评论:0      收藏:0      [点我收藏+]

标签:

问题:快速求取正整数a,b的最大公约数?

欧几里得算法(又称辗转相除法)

定理:gcd(a,b) = gcd(a,a mod b) 

证明:对于任何正整数a,b。如果a>b,都有a=k*b+r  即r=a-k*b =>  r=a mod b.

         假设d为a,b的公约数,则a=a1*d,b=b1*d。

         而r=a1*d-k*b1*d=(a1-k*b1)*d  =>  d也是r的约数 => d也是(a,r)的公约数

         则说明(a,b)的公约数也就是(a,r)的公约数。因此gcd(a,b)=gcd(a,a mod b)。

/**
 * 求最大公约数
 * 
 * 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。
 * 其计算原理依赖于下面的定理:gcd(a,b) = gcd(b,a mod b) 
 * 
 * @author heartraid
 */
public class EuclidDivisor {


    public static int getDivisor(int a,int b){
        if(a%b==0) return b;
        if(b%a==0) return a;
        return a>=b?getDivisor(a,a%b):getDivisor(a,b%a);
    }
    
    public static void main(String[] args) {
        System.out.println(EuclidDivisor.getDivisor(12,8));
    }

}

引申: 快速求取正整数a,b的最小公倍数? 首先求出a,b的最大公约数c=(a,b),然后用a*b/c 即可。

 

欧几里得求最大公约数

标签:

原文地址:http://www.cnblogs.com/winner-0715/p/5022143.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!