标签:
https://leetcode.com/problems/count-of-smaller-numbers-after-self/
You are given an integer array nums and you have to return a new counts array. The counts array has the property where $counts[i]$ is the number of smaller elements to the right of $nums[i]$.
Example:
Given $nums = [5,2,6,1]$
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
Return the array $[2, 1, 1, 0]$.
线段树求逆序数,先离散化,再用线段树统计。。
class Solution { private: typedef vector<int> vec; public: vec countSmaller(vec& nums) { vec ans; int n = 0; if (!(n = nums.size())) return ans; ans.resize(n, 0); ret = new P[n + 10]; for (int i = 1; i <= n; i++) ret[i] = P(nums[i - 1], i); sort(ret + 1, ret + n + 1); seg = new int[(n + 10) << 2]; memset(seg, 0, sizeof(int)* ((n + 10) << 2)); for (int i = 1; i <= n; i++) { int v = query(1, 1, n, ret[i].id, n); insert(1, 1, n, ret[i].id); ans[ret[i].id - 1] = v; } delete[]seg; delete[]ret; return ans; } private: struct P { int v, id; P(int _i_ = 0, int _j_ = 0) :v(_i_), id(_j_) {} friend bool operator<(const P &a, const P &b) { return a.v == b.v ? a.id < b.id : a.v < b.v; } }*ret; int *seg; inline void insert(int root, int l, int r, int p) { if (p > r || p < l) return; if (p <= l && p >= r) { seg[root]++; return; } int mid = (l + r) >> 1; insert(root << 1, l, mid, p); insert(root << 1 | 1, mid + 1, r, p); seg[root] = seg[root << 1] + seg[root << 1 | 1]; } inline int query(int root, int l, int r, int x, int y) { if (x > r || y < l) return 0; if (x <= l && y >= r) return seg[root]; int ret = 0; int mid = (l + r) >> 1; ret += query(root<<1, l, mid, x, y); ret += query(root << 1 | 1, mid + 1, r, x, y); return ret; } };
leetcode Count of Smaller Numbers After Self
标签:
原文地址:http://www.cnblogs.com/GadyPu/p/5024052.html