码迷,mamicode.com
首页 > 其他好文 > 详细

高次同余方程模板BabyStep-GiantStep

时间:2015-12-07 02:08:53      阅读:246      评论:0      收藏:0      [点我收藏+]

标签:

/*************************************
 ---高次同余方程模板BabyStep-GiantStep---
 
 输入:对于方程A^x=B(mod C),调用BabyStep(A,B,C),(0<=A,B,C<=10^9)
 
 输出:无解放回-1,有解放回最小非负整数x
 
 复杂度:O(C^0.5),只与C有关,与A,B的大小无关
 ************************************/

typedef long long ll;
#define HASH_N 100007

struct hashnode
{
    int next;
    ll key;
    int j;
}HashLink[ HASH_N ];

int hashpre[ HASH_N ],hashcnt;

void hash_insert(ll x,ll key,int j)
{
    for(int p=hashpre[x];p!=-1;p=HashLink[p].next)
    {
        if(HashLink[p].key==key) return ;
    }
    HashLink[ hashcnt ].key = key;
    HashLink[ hashcnt ].j = j;
    HashLink[ hashcnt ].next = hashpre[x];
    hashpre[x] = hashcnt++;
}

int hash_get(ll key)
{
    ll x=key%HASH_N;
    for(int p=hashpre[x];p!=-1;p=HashLink[p].next)
    {
        if( HashLink[p].key == key ) return HashLink[p].j;
    }
    return -1;
}

ll gcd(ll a,ll b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}

//ax + by = gcd(a,b)
//传入固定值a,b.放回 d=gcd(a,b), x , y
void extendgcd(long long a,long long b,long long &d,long long &x,long long &y)
{
    if(b==0){d=a;x=1;y=0;return;}
    extendgcd(b,a%b,d,y,x);
    y-=x*(a/b);
}

//Ax=1(mod M)
//返回x的范围是[0,M-1]
ll GetNi(ll A,ll M)
{
    ll rex=0,rey=0;
    ll td=0;
    extendgcd(A,M,td,rex,rey);
    return (rex%M+M)%M;
}

//a^b%mod 快速幂
long long Quk_Mul(long long a,long long b,long long mod)
{
    long long qsum=1;
    while(b)
    {
        if(b&1) qsum=(qsum*a)%mod;
        b>>=1;
        a=(a*a)%mod;
    }
    return qsum;
}

//测试x较小的情况,必须!
ll firsttest(ll A,ll B,ll C)
{
    ll tmp=1;
    if(B==1) return 0;
    for(int i=1;i<100;i++)
    {
        tmp = (tmp*A)%C;
        if(tmp==B) return i;
    }
    return -1;
}

//欧拉函数 返回[1,x-1]中与x互素的数的个数,复杂度n^0.5
ll euler(ll x)
{
    ll i, res=x;
    for (i = 2; i < (ll)sqrt(x * 1.0) + 1; i++)
        if(x%i==0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);
    return res;
}


ll BabyStep(ll A,ll B,ll C)
{
    if(0==A || 0==C) return -1;
    if(C==1) return 0;
    B = B%C;
    ll ans = firsttest(A,B,C);//为了防止x比较小的时候
    if(ans != -1) return ans;
    ll D=1;
    int c=0;
    ll d;
    while( (d=gcd(A,C)) != 1 )
    {
        if( B%d !=0 ) return -1;//无解的情况
        B /= d;
        C /= d;
        D = D*A/d%C;
        c++;
    }
    
    //得到了 D*A^(x-c)=B (mod C) ,gcd(A,C)=1 , gcd(D,C)=1
    ll D_1=GetNi(D,C);//求D的逆元
    B = B*D_1%C;
    //求A^x=B (mod C),然后返回x+c
    ll m = ceil( sqrt(C+0.0) );
    
    memset(hashpre,-1,sizeof(hashpre));
    hashcnt=0;
    ll hashnum=1;
    hash_insert(1, 1, 0);
    for(int i=1;i<m;i++)
    {
        hashnum = (hashnum*A)%C;
        hash_insert(hashnum%HASH_N, hashnum ,i);
    }
    
    ll ol=euler(C);
    ll mA=Quk_Mul(A, m, C);
    ll ta=1;
    
    ll tmpni = Quk_Mul(mA, ol-1, C);
    
    for(int i=0;i<m;i++,ta=ta*tmpni%C)
    {
        //解线性同余方程 tx=B*ta (%C) ,ta直接用费马小定理求逆元
        ll tx = ta;
        tx = (tx*B)%C;
        int j=hash_get(tx);
        if(j!=-1)//找到解了
        {
            return i*m+j+c;
        }
    }
    
    return -1;
}

其实还是很很正常的解法,这个甚至可以当成一道难一点的数论题目做。

关于详细的解释。

高次同余方程模板BabyStep-GiantStep

标签:

原文地址:http://www.cnblogs.com/chenhuan001/p/5024852.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!