码迷,mamicode.com
首页 > 其他好文 > 详细

【万字总结】探讨递归与迭代的区别与联系及如何求解10000的阶层

时间:2015-12-12 12:38:37      阅读:242      评论:0      收藏:0      [点我收藏+]

标签:

递归和迭代

这两个概念也许很多童鞋依旧分不清楚,下面通过求解斐波那契数来看看它们俩的关系吧。

斐波那契数的定义:

f0=0

f1=1

fi=fi?1+fi?2(i>1)

递归:

(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))
(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2)))))
(* 6 (* 5 (* 4 (* 3 (2 (factorial 1))))))
(* 6 (* 5 (* 4 (* 3 (* 2 1)))))
(* 6 (* 5 (* 4* 3 2))))
(* 6 (* 5 (* 4 6)))
(* 6 (* 5 24))
(* 6 120)
720

迭代:

(factorial 6)
(factorial 1 1 6)
(factorial 1 2 6)
(factorial 2 3 6)
(factorial 6 4 6)
(factorial 24 5 6)
(factorial 120 6 6)
(factorial 720 7 6)
720

递归的核心在于:不断地回到起点
迭代的核心在于:不断地更新参数

在下面的代码中:

递归的核心是sum的运算,sum不断的累乘,虽然运算的数值不同,但形式和意义一样。

而迭代的核心是product和counter的不断更新。如上表中,product就是factorial的前2个参数不断的累乘更新成第一个参数;而第二个参数则是counter,其不断的加1来更新自己。

product <- counter * product 
counter < - counter + 1
#include <iostream>

using namespace std;

int factorialRecursive(int n);
int factorialIteration(int product, int counter, int max_count);

int main()
{
    int n;
    cout<<"Enter an integer:"<<endl;
    cin>>n;
    cout<<factorialRecursive(n)<<endl;
    cout<<factorialIteration(1,1,n)<<endl;

    return 0;
}

int factorialRecursive(int n)
{
    int sum=1;
    if(n==1)
        sum*=1;
    else
        sum=n*factorialRecursive(n-1);
    return sum;
}

int factorialIteration(int product, int counter, int max_count)
{
    int sum=1;
    if(counter>max_count)
        sum*=product;
    else
        factorialIteration((counter*product),(counter+1),max_count);
}

补充问题:

关于上面的factorialIteration函数,今天收到一份邮件,我也通过再次分析学到了很多,这里罗列一下。


第一个问题:

首先来看相对简单的问题,该童鞋在函数内以两种不同方式加上another_sum=2却有着不同的结果。

int factorialIteration(int product, int counter, int max_count)
{
    int sum=1;
    int another_sum=2;
    if(counter>max_count)
    {
        sum*=product;
        another_sum*=product;
    }    
    else
        factorialIteration((counter*product),(counter+1),max_count);
}
int factorialIteration(int product, int counter, int max_count)
{
    int sum=1;
    int another_sum=2;
    if(counter>max_count)
    {
        another_sum*=product;
        sum*=product;

    }    
    else
        factorialIteration((counter*product),(counter+1),max_count);
}

因为这个函数声明的是int型的返回类型,但没有用return语句,所以C++自动将其运行的最后一行语句作为了返回语句。所以这两个函数类似于:

int factorialIteration(int product, int counter, int max_count)
{
    int sum=1;
    int another_sum=2;
    if(counter>max_count)
    {
        sum*=product;
        return another_sum*=product;
    }
    else
        factorialIteration((counter*product),(counter+1),max_count);
}


int factorialIteration(int product, int counter, int max_count)
{
    int sum=1;
    int another_sum=2;
    if(counter>max_count)
    {
        another_sum*=product;
        return sum*=product;
    }
    else
        factorialIteration((counter*product),(counter+1),max_count);
}

然而我在CodeBlocks中写的代码不用return是可以的,但在Visual Studio中却是会报错的。

有了这个发现,我原来的代码也可以这样来写:

#include <iostream>

using namespace std;

int factorialRecursive(int n);
int factorialIteration(int product, int counter, int max_count);

int main()
{
    int n;
    cout<<"Enter an integer:"<<endl;
    cin>>n;
    cout<<factorialRecursive(n)<<endl;
    cout<<factorialIteration(1,1,n)<<endl;

    return 0;
}

int factorialRecursive(int n)
{
    int sum=1;
    if(n==1)
        sum*=1;
    else
        sum=n*factorialRecursive(n-1);
    // return sum;   // 去掉这里的return语句
}

int factorialIteration(int product, int counter, int max_count)
{
    int sum=1;
    if(counter>max_count)
        return sum*=product;   // 在这里加上return语句
    else
        factorialIteration((counter*product),(counter+1),max_count);
}

现在来看另一个问题:

#include <iostream>
using namespace std;

int test(int n);
int sum;

int main()
{
    cout<<test(1)<<endl;
    return 0;
}
int test(int n)
{
    sum = 1;
    sum += n;
    if (sum < 5)   
        test(n+1);
}

如果设sum为全局变量,那么会在test函数中每一次调用sum=1时都将sum重新赋值为1。整个程序最后输出为5。这个应该没有什么悬念吧?

如果设sum给test内的局部变量,则会在每一次执行int sum=1语句时都会创建一个新的sum对象,它的存放地址和之前的sum并不相同。然后整个程序最后输出意外的是4。

#include <iostream>
using namespace std;

int test(int n);

int main()
{
    cout<<test(1)<<endl;
    return 0;
}
int test(int n)
{
    int sum = 1;
    sum += n;
    if (sum < 5)
        return test(n+1);
    // return sum;   此处有这一行代码命名为程序1,没有这行代码命名为程序2
}

程序1的输出是5,程序2的输出是4。具体函数执行过程如下:

第一步,调用test(1):

int sum=1
sum=2
return test(2)

第二步,调用test(2):

int sum=1
sum=3
return test(3)

第三步,调用test(3):

int sum=1
sum=4
return test(4)

第四步,调用test(4):

int sum=1
sum=5

执行到第四步的时候,由于sum以及不比5小了,所以程序1没有进入if语句而是执行下一句return sum,所以输出为1。

而如果是程序2,也就是没有return sum语句,那么程序在执行完第四步后就会返回到第三步,最终调用(return) sum=4,输出4。


第三个问题:

该童鞋还提到了尾递归,这里我就来说说我的理解,如有问题欢迎大家直接评论或邮件给我。

上面代码中的递归函数factorialRecursive应该没问题的吧。

上面的代码我给其命名为迭代。

int factorialIteration(int product, int counter, int max_count)
{
    int sum=1;
    if(counter>max_count)
        sum*=product;
    else
        factorialIteration((counter*product),(counter+1),max_count);
}

通过在main函数中调用如下代码来执行该函数:

cout<<factorialIteration(1,1,n)<<endl;

当然,也可以另外写一个函数如下:

int factorialIter(int n)
{
    return factorialIteration(1,1,n);
}

并通过在main函数中直接调用该函数来做计算:

cout<<factorialIter(n)<<endl;

函数factorialIteration中的max_count我们称其为“循环不变量”,也就是对于整个运算过程而言这个变量是不变的。为了让大家更加印象深刻,将前面出现过的东西再来复制一遍:

(factorial 6)
(factorial 1 1 6)
(factorial 1 2 6)
(factorial 2 3 6)
(factorial 6 4 6)
(factorial 24 5 6)
(factorial 120 6 6)
(factorial 720 7 6)
720

从第二行开始的factorial的第三个参数”6“就是循环不变量。

尾递归:

在计算机科学中,尾调用是一个作为过程最后一步的子例程调用执行。如果尾调用可能在以后的调用链中再调用这同一个子例程,那么这个子例程就被称为是尾递归,它是递归的一个特殊情况。尾递归非常有用,在实现中也容易处理。尾调用可以不通过在调用堆栈中添加新的栈帧而实现。

传统上,尾部调用消除是可选的。然而,在函数式编程语言中,尾调用消除往往由语言标准作为保障,这种保证允许使用递归,在特定情况下的尾递归,来代替循环。在这种情况下,尽管用它作为一种优化是不正确的(尽管它可能是习惯用法)。在尾递归中,当一个函数调用它自身这种特殊情况下,可能调用消除比传统的尾调用更加合适。

迭代:

迭代是一个重复过程,它的目的是接近既定的目标或结果。每次重复的过程也称为”迭代“,作为迭代的结果都将作为下一次迭代的起点。

迭代在计算中是指的计算机程序中的重复的语句块。它可以表示两个专业术语,同义重复,以及描述一种具有可变状态重复的具体形式。然后令人费解的是,它也可以表示通过显式重复结构的任何重复,而不管其可变性。

在第一个意义上,递归是迭代的一个例子,但通常用”递归“来标记,而不作为”迭代“的例子。

在第二个意义上,(更加狭义地)迭代描述了一种编程风格。这与一个有着更有声明性方法的递归有着鲜明的对比。

第三个意义上,使用while或for循环,以及使用map或fold的函数也被视为迭代。

(以上定义部分摘自英文维基百科)

关于递归和尾递归在函数式编程中的应用也可以看这里:【Scheme归纳】3 比较do, let, loop

下面我也列出了相关的Scheme语言的代码:

(define (factorial n)
    (if (= n 1)
        1
        (* n (factorial (- n 1)))))
(define (factorial n)
    (fact-iter 1 1 n))
(define (fact-iter product counter max-count)
    (if (> counter max-count)
        product
        (fact-iter (* counter product)
                   (+ counter 1)
                   max-counter)))

以上分别是递归和迭代的阶层,下面是Common Lisp语言版的斐波那契数求法:

(defun fib (n)
    (fib-iter 1 0 n))
(defun fib-iter (a b count)
    (if (= count 0)
        b
        (fib-iter (+ a b) a (- count 1))))

借助递归树求解递归式

前面我们已经看到了递归式,也看到了递归树,那么如何借助递归树来求解递归式呢?接下来就来看看吧。

在递归树中,每个结点都表示一个单一问题的代价,子问题对应某次递归函数调用。

通过对树中每层的代价进行求和,就可以得到每层的代价;然后将所有层的代价求和,就可以得要到所有层次的递归调用的总代价。

我们通常用递归树来得出一个较好的猜测结果,然后用代入法来证明猜测是否正确。但是通过递归树来得到结果时,不可避免的要忍受一些”不精确“,得在稍后才能验证猜测是否正确。

因为下面的示例图太难用键盘敲出来了,我就用了手写,希望大家不介意。

技术分享

如下所示,有一个递归式,我们要借助它的递归树来求解最终的结果。前面所说的忍受“不精确”这里就有2点:

1)我们要关注的更应该是解的上界,因为我们知道舍入对求解递归式没有影响,因此可以将Θ(n2)写成cn2,且为该递归式创建了如下递归树。

2)我们还将n假定为2的幂,这样所有子问题的规模均为正数。

图a所示的是T(n),在图b中则得到了一步扩展的机会。它是如何分裂的呢?递归式的系数为3,因此有3个子结点;n被分为2部分,因此每个结点的耗时为T(n/2)。图c所示的则是更加进一步的扩展,且直到最后的终点。

这棵树有多高(深)呢?

我们发现对于深度为i的结点,相应的规模为n/2i。因此当n/2i=1时,也就意味着等式i=log2n成立,此时子问题的规模为1。因此这个递归树有log2n+1层。那为什么不是log2n层呢?因为深度从0开始,也就是(0,1,2,...,log2n)

有了深度还需要计算每一层的代价。其中每层的结点数都是上一层的3倍,因此深度为i的结点数为3i。而每一层的规模都是上一层的1/4,所以对于i=0,1,2,...,log4n?1,深度为i的每个结点的代价为c(n/2i)2

因此对于i=0,1,2,...,log4n?1,深度为i的所有结点的总代价为(3i)?(c(n/2i)2),也就是3ic(n/2i)2

递归树的最底层深度为log2n,它有3log2n=nlog23个结点,每个结点的代价为T(1),总代价就是nlog23T(1),假定T(1)为常量,即为Θ(nlog23)

技术分享

至于这最后的4c为什么可以直接省略掉,如上一节所说的,渐近记号都包含了常量因子。因此猜测T(n)=Θ(n2)。在这个示例中,cn2的系数形成了一个递减几何级数。由于根结点对总代价的贡献为cn2,所以根结点的代价占总代价的一个常量比例,也就是说,根结点的代价支配了整棵树的总代价。

技术分享

不知道大家看不看得清,上面的两行文字是“我们要证的是T(n)dn2对某个常量d>0成立,使用常量c>0“和”当d4c时,最后一步成立。

霍纳规则

在看如何求解1000的阶层之前,我们不妨先看看一个简单点的:霍纳规则。当然,您也可以停顿下来先自己琢磨琢磨。

一、背景

霍纳(Horner)规则是采用最少的乘法运算策略,来求多项式

A(x)=anxn+an?1xn?1+...+a1x+a0

在x0处的值。

该规则为

A(x0)=(...((anx0+an?1)x0+...+a1)x0+a0)

二、分析

如果光看着式子或许会有点烦躁,不妨手动设定几个值到式子中去来手工运算一番,这样一来也会有些亲身的理解。

通过分解我们注意到,从右往左来看,每一个小式子都是如此:

something?x0+ai

三、代码

C语言版

#include <stdio.h>
#include <stdlib.h>

int hornerRule(int list[],int m,int x0);

int main()
{
    int m,x0;
    printf("Enter an integer (length of list): \n");
    scanf("%d",&m);
    int list[m];
    printf("Enter some integers for list: \n");
    int i;
    for(i=m-1;i>=0;i--)
    {
        scanf("%d",&list[i]);
    }
    printf("Enter an integer for x0: \n");
    scanf("%d",&x0);
    printf("%d",hornerRule(list,m,x0));

    return 0;
}

int hornerRule(int list[],int m,int x0)
{
    if(m<=1)
        return list[0];
    else
        return list[0]+(hornerRule(list+1,m-1,x0))*x0;
}

C++语言版

#include <iostream>

using namespace std;

int hornerRule(int list[],int m,int x0);

int main()
{
    int m,x0;
    cout<<"Enter an integer (length of list):"<<endl;
    cin>>m;
    int list[m];
    cout<<"Enter some integers for list:"<<endl;
    for(int i=m-1;i>=0;i--)
    {
        cin>>list[i];
    }
    cout<<"Enter an integer for x0:"<<endl;
    cin>>x0;

    cout<<hornerRule(list,m,x0);

    return 0;
}

int hornerRule(int list[],int m,int x0)
{
    if(m<=1)
        return list[0];
    else
        return list[0]+(hornerRule(list+1,m-1,x0))*x0;
}

四、测试

技术分享

五、进阶

(PS:博主有一段时间没有碰Scheme有点忘了,所以下面的代码可能有些……粗糙)
关于Scheme可以看这里:
专栏:SICP练习
专栏:Scheme归纳

(define (Horner list m x0)
  (define (Horner-iter ls n)
    (if (<= n 1)
    (car ls)
    (+ (car ls) (* (Horner-iter (cdr ls) (- n 1)) x0))))
  (Horner-iter list m))

(define list ‘(1 2 1 0 3 1))
;Value: list

(Horner list 6 10)
;Value: 130121

如何求解10000的阶层

看到过一个蛮有意思的题,是问“100!”的尾数有多少个零。

尾数有多少个零,实际上指的是从这个数的最后一个不为0的数的下一个(也就是0)开始计数,一直到最后一个数(这些数自然都是0)有多少个0。

好吧,也就是说13330330000的尾数有4个零……

一个整数若含有因子5,则必然在求解100!时产生一个0,也就是说我们从5开始for循环,每次循环都给加上5,然后计数器加1。同时如果该整数还能被25整除,计数器还应该再加上1。(关于这段话的详细解释请看下文)

因此代码如下:

#include<stdio.h>

int main()
{
    int a,count =0;
    for(a=5;a<=100;a+=5)
    {
        ++count;
        if(!(a%25))
            ++count;
    }
    printf("100!的尾数有%d个零。\n",count);
    return 0;
}

题目后面进一步问了如何求出任意N!的尾数有多少个零。

#include<stdio.h>

int main()
{
    int n;
    printf("请输入N:\n");
    scanf("%d",&n);
    if(n<0)
        printf("%d的阶层无意义。\n",n);
    else if(n<=4)
        printf("%d的阶层的尾数没有零。\n");
    else
    {
        int a,count =0;
        for(a=5;a<=n;a+=5)
        {
            ++count;
            if(!(a%25))
                ++count;
        }
        printf("100!的尾数有%d个零。\n",count);
    }
    return 0;
}

本文就这样结束了吗?

题目的解答中有这么一段话:先求出100!的值,然后数一下末尾有多少个零。事实上,由于计算机所能表示的整数范围有限,这是不可能的。

首先,什么叫计算机所能表示的整数范围?应该叫int等数据类型的整数范围有限才对,计算机嘛……撑死了只能说不能存储而非不能表示。

另外100的阶层真的求不出来吗?请往下读。

我的博客中有大量关于Lisp,或者说Scheme的博文,使用这个语言,几行代码就能搞定了不是吗?欢迎阅读我的其他博文……

(define (fact n)
  (if (= n 1)
      1
      (* n (fact (- n 1)))))
;Value: fact

1000的阶层也能求,截图为证……

技术分享

闲得无聊,以下是10000的阶层,大家可以继续算更大的数,哈哈……

………………

我发现这个CSDN博客写上这么多数字之后博客没法提交,有异常……没办法,只能上传了……下载后觉得有意思记得回来点赞哦……

传送门:10000的阶层

有网友私信问我,为什么一个整数若含有因子5,则必然在求解100!时产生一个0。这里所说的一个整数,自然是在求100的阶层时需要计算的从1到100这些整数。我下列出一些等式:

1x2=2
2x3=6
6x4=24
24x5=120

120x6=720
720x7=5040
5040x8=40320
40320x9=362880
362880x10=3628800

3628800x11=39916800
3991680x12=479001600
47900160x13=6227020800
622702080x14=87178291200
8717829120x15=1307674368000
…… ……

看到上式就会发现每次尾部增加0都是因为成了一个因子是5的整数。那么一直乘到100都会是这样吗?当然是。但这样就能证明?显然不能。

我们来看看各个整数的最后一个数:

如果是0的话,也就是说是乘以10或者20、30之类的,那么肯定会加上一个0。而且它也是5的倍数。

如果是1的话,无论乘以谁显然都不可能得到10。(这里的谁是指的的上面那些式子中的乘号左边的数的最后一个不为0的数。

如果是2的话,乘以5会得到10。

如果是4、6、8的话乘以5也会得到10。

如果是3、7、9的话就和1一样不会得到10。(得不到10也就无法增加一个0)

那么为什么是5而不是2、4、6、8呢?因为对于任何一个大于1的数的阶层而言,它的最后一个不为0的数必然是偶数。这又是为什么呢?因为最起码一开始就成了2,结果变成了偶数,而偶数乘以偶数为偶数,偶数乘奇数还是偶数…… 而2、4、6、8都必须和5相乘才可以得到10,以至于增加一个0。

那么5呢?5乘以任意一个偶数不都可以增加一个0吗,比如所10、20、30、40等等。

那么这个问题就得到了较为具体的解答。该网友还问了,为什么一个整数有25的因子,就需要计数再加1呢,很显然25是两个5的乘积呀。那么又为什么不考虑5的三次方也就是125呢?因为我们只乘到了100呀,100的阶层嘛。

如果不信我们就来验算一下呗……

#include<stdio.h>

int main()
{
    int a,count =0;
    for(a=5;a<=200;a+=5)
    {
        ++count;
        if(!(a%25))
        {
            ++count;
            if(!(a%125))
                ++count;
        }

    }
    printf("200!的尾数有%d个零。\n",count);
    return 0;
}

还有截图为证哦……

技术分享

后来还看到一个题目,和这个也类似,需要求的是100的阶层的结果的数字中从左到右第一个四位的质数。

代码来源于网络以及别人的解答,感觉这里还是蛮巧妙地。

// C# Code
    public static class Program
    {
        public static void Main(string[] args)
        {
            string fac100 = Factorial(100).ToString("F0");
            Console.WriteLine("The factorial of 100 is : {0}", fac100);

            for (int i = 0; i <= fac100.Length - 4; i++)
            {
                string substr = fac100.Substring(i, 4);
                if (CheckPrime(Convert.ToInt32(substr)))
                {
                    Console.WriteLine("The expected result found and it is : " + substr);
                    return;
                }
            }       
            Console.WriteLine("No result as expected!!");
        }

        public static double Factorial(int n)
        {
            double result = 1;
            for (int i = 1; i <= n; i++)        
                result *= i;    
            return result;
        }                   

        public static bool CheckPrime(int n)
        {
            if (n == 1 || n == 2)           
                return true;        
            int squareRoot = Convert.ToInt32(Math.Sqrt(n));
            for (int i = squareRoot; i > 1; i--)                   
                if (n % i == 0)                           
                    return false;     
            return true;
        }
    }
// C++ Code
#include <iostream>
#include <math.h>
using namespace std;

double Factorial(int n)
{
    double result = 1;
    for (int i = 1; i <= n; i++)
        result *= i;
    return result;
}

bool CheckPrime(long n)
{
    if (n == 1 || n == 2)
        return true;
    long squareRoot = (long)sqrt(n);
    for (long i = squareRoot; i > 1; i--)
        if (n % i == 0)
        return false;
    return true;
}

int main(int argc, char *argv[])
{
    char buf[1024] = { ‘\0‘ };
    sprintf_s(buf, "%.f", Factorial(100));
    cout << "The factorial of 100 is : " << buf << endl;

    char substr[5] = { ‘\0‘ };
    for (int i = 0; i <= strlen(buf) - 4; i++)
    {
        memcpy(substr, buf + i, 4);
        if (CheckPrime(atol(substr)))
        {
            cout << "The expected result found and it is : " << substr << endl;
            return 0;
        }
    }
    cout << "No result as expected!!";
    return 0;
}
// C Code
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdbool.h>

double Factorial(int n)
{
    double result = 1;
    int i;
    for (i = 1; i <= n; i++)
        result *= i;
    return result;
}

bool CheckPrime(long n)
{
    if (n == 1 || n == 2)
        return true;
    long squareRoot = (long)sqrt(n);
    long i;
    for (i = squareRoot; i > 1; i--)
        if (n % i == 0)
        return false;
    return true;
}

int main(int argc, char *argv[])
{
    char buf[1024] = { ‘\0‘ };
    sprintf(buf, "%.f", Factorial(100));
    printf("The factorial of 100 is : %s\n",buf);

    char substr[5] = { ‘\0‘ };
    int i;
    for (i = 0; i <= strlen(buf) - 4; i++)
    {
        memcpy(substr, buf + i, 4);
        if (CheckPrime(atol(substr)))
        {
            printf("The expected result found and it is : %s\n",substr);
            return 0;
        }
    }
    printf("No result as expected!!\n");
    return 0;
}


欢迎大家点击左上角的“关注”或右上角的“收藏”方便以后阅读。


号外

求投票或转发支持呀……希望我不要死得太惨了……

请点击这里:投票

投票从10号开始一直持续到20号,拜托各位了!

技术分享
——————当然你也可以直接点击图片啦

【万字总结】探讨递归与迭代的区别与联系及如何求解10000的阶层

标签:

原文地址:http://blog.csdn.net/nomasp/article/details/50273685

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!