标签:
转自:http://www.cnblogs.com/datacloud/p/3604492.html
原书章节 | 原书章节题目 | 翻译文章序号 | 翻译文章题目 | 链接 |
4.1 | Joining | Hadoop(1) | MapReduce 连接:重分区连接(Repartition join) | http://www.cnblogs.com/datacloud/p/3578509.html |
4.1.1 | Repartition join | Hadoop(1) | MapReduce 连接:重分区连接(Repartition join) | http://www.cnblogs.com/datacloud/p/3578509.html |
4.1.2 | Replicated joins | Hadoop(2) | MapReduce 连接:复制连接(Replication join) | http://www.cnblogs.com/datacloud/p/3579333.html |
4.1.3 | Semi-joins | Hadoop(3) | MapReduce 连接:半连接(Semi-join) | http://www.cnblogs.com/datacloud/p/3579975.html |
4.1.4 | Picking the best join strategy for your data | Hadoop(4) | MapReduce 连接:选择最佳连接策略 | http://www.cnblogs.com/datacloud/p/3582113.html |
4.2 | Sorting | Hadoop(5) | MapReduce 排序:次排序(Secondary sort) | http://www.cnblogs.com/datacloud/p/3584640.html |
4.2.1 | Secondary sort | Hadoop(5) | MapReduce 排序:次排序(Secondary sort) | http://www.cnblogs.com/datacloud/p/3584640.html |
4.2.2 | Total order sorting | Hadoop(6) | MapReduce 排序:总排序(Total order sorting) | http://www.cnblogs.com/datacloud/p/3586761.html |
4.3 | Sampling | Hadoop(7) | MapReduce:抽样(Sampling) | http://www.cnblogs.com/datacloud/p/3588120.html |
6.1 | Measuring MapReduce and your environment | Hadoop(8) | MapReduce 性能调优:性能测量(Measuring) | http://www.cnblogs.com/datacloud/p/3589875.html |
6.2 | Determining the cause of your performance woes | Hadoop(9) | MapReduce 性能调优:理解性能瓶颈,诊断map性能瓶颈 | http://www.cnblogs.com/datacloud/p/3591981.html |
6.2.1 | Understanding what can impact MapReduce job performance | Hadoop(9) | MapReduce 性能调优:理解性能瓶颈,诊断map性能瓶颈 | http://www.cnblogs.com/datacloud/p/3591981.html |
6.2.2 | Map woes | Hadoop(9) | MapReduce 性能调优:理解性能瓶颈,诊断map性能瓶颈 | http://www.cnblogs.com/datacloud/p/3591981.html |
6.2.3 | Reducer woes | Hadoop(10) | MapReduce 性能调优:诊断reduce性能瓶颈 | http://www.cnblogs.com/datacloud/p/3595682.html |
6.2.4 | General task woes | Hadoop(11) | MapReduce 性能调优:诊断一般性能瓶颈 | http://www.cnblogs.com/datacloud/p/3596294.html |
6.2.5 | Hardware woes | Hadoop(12) | MapReduce 性能调优:诊断硬件性能瓶颈 | http://www.cnblogs.com/datacloud/p/3597909.html |
6.4.3 | Optimizing the shuffle and sort phase | Hadoop(13) | MapReduce 性能调优:优化洗牌(shuffle)和排序阶段 | http://www.cnblogs.com/datacloud/p/3599920.html |
6.4.4 | Skew mitigation | Hadoop(14) | MapReduce 性能调优:减小数据倾斜的性能损失 | http://www.cnblogs.com/datacloud/p/3601624.html |
6.4.5 | Optimizing user space Java in MapReduce | Hadoop(15) | MapReduce 性能调优:优化MapReduce的用户JAVA代码 | http://www.cnblogs.com/datacloud/p/3603191.html |
6.4.6 | Data serialization | Hadoop(16) | MapReduce 性能调优:优化数据序列化 | http://www.cnblogs.com/datacloud/p/3608591.html |
6.5 | Chapter summary | Hadoop(16) | MapReduce 性能调优:优化数据序列化 | http://www.cnblogs.com/datacloud/p/3608591.html |
5.1 | Working with small files | Hadoop(17) | MapReduce 文件处理:小文件 | http://www.cnblogs.com/datacloud/p/3611459.html |
5.2 | Efficient storage with compression(tech 25, 26) | Hadoop(19) | MapReduce 文件处理:基于压缩的高效存储(一) | http://www.cnblogs.com/datacloud/p/3612817.html |
5.2 | Efficient storage with compression(tech 27) | Hadoop(19) | MapReduce 文件处理:基于压缩的高效存储(一) | http://www.cnblogs.com/datacloud/p/3616544.html |
Appendix A.10 | LZOP | Hadoop(20) | 附录A.10 压缩格式LZOP编译安装配置 | http://www.cnblogs.com/datacloud/p/3617586.html |
Appendix D.1 | An optimized repartition join framework | Hadoop(21) | 附录D.1 优化后的重分区框架 | http://www.cnblogs.com/datacloud/p/3617079.html |
Appendix D.2 | A replicated join framework | Hadoop(22) | 附录D.2 复制连接框架 | http://www.cnblogs.com/datacloud/p/3617078.html |
标签:
原文地址:http://www.cnblogs.com/cxzdy/p/5057410.html