题意:给图一个流程图,有结点的流程,每次进入下一个流程概率是均等的,有q次询问,求出每次询问结点的执行期望
思路:高斯消元,每个结点的期望等于所有前趋结点的期望/出度的和,由于存在无限循环的情况,不能直接递推,利用高斯消元去做,判断无解的情况既为无限循环,注意如果一个式自xi为0,但是xn也为0,xi值应该是0,表示无法到达
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <vector> using namespace std; const int N = 105; const double eps = 1e-9; int n, d[N], inf[N]; double a[N][N]; vector<int> pre[N]; void build() { int u, v; memset(d, 0, sizeof(d)); for (int i = 0; i < n; i++) pre[i].clear(); while (~scanf("%d%d", &u, &v) && u) { u--; v--; d[u]++; pre[v].push_back(u); } memset(a, 0, sizeof(a)); for (int i = 0; i < n; i++) { a[i][i] = 1; for (int j = 0; j < pre[i].size(); j++) a[i][pre[i][j]] = -1.0 / d[pre[i][j]]; if (i == 0) a[i][n] = 1; } } void gauss() { for (int i = 0; i < n; i++) { int k = i; for (;k < n; k++) if (fabs(a[k][i]) > eps) break; if (k == n) continue; for (int j = 0; j <= n; j++) swap(a[k][j], a[i][j]); for (int j = 0; j < n; j++) { if (i == j) continue; if (fabs(a[k][i]) > eps) { double x = a[j][i] / a[i][i]; for (int k = i; k <= n; k++) a[j][k] -= x * a[i][k]; } } } } void get_inf() { memset(inf, 0, sizeof(inf)); for (int i = n - 1; i >= 0; i--) { if (fabs(a[i][i]) < eps && fabs(a[i][n]) > eps) inf[i] = 1; for (int j = i + 1; j < n; j++) if (fabs(a[i][j]) > eps && inf[j]) inf[i] = 1; } } int main() { int cas = 0; while (~scanf("%d", &n) && n) { build(); gauss(); get_inf(); int q, node; scanf("%d", &q); printf("Case #%d:\n", ++cas); while (q--) { scanf("%d", &node); node--; if (inf[node]) printf("infinity\n"); else printf("%.3lf\n", fabs(a[node][node]) < eps ? 0 : a[node][n] / a[node][node]); } } return 0; }
UVA 10828 - Back to Kernighan-Ritchie(概率+高斯消元),布布扣,bubuko.com
UVA 10828 - Back to Kernighan-Ritchie(概率+高斯消元)
原文地址:http://blog.csdn.net/accelerator_/article/details/38026125