标签:
http://acm.hdu.edu.cn/showproblem.php?pid=5072
现场赛和队友想了3个小时,最后发现想跑偏了。感觉好可惜的一道题,要是知道这个模型....就能够轻松的拿银了啊。
。
。
题意不再赘述,就是求同色三角形的个数。总的三角形的个数是C(n,3),仅仅需减去不同色的三角形就可以。对于每一个点(数),与它互质的连红边,不互质的连蓝边,那么对于该点不同色三角形个数为蓝边数*红边数/2,由于同一个三角形被计算了两次。
那么同色三角形个数为C(n,3) - ∑蓝边数*红边数/2。
我们仅仅需求出蓝边数就能得知红边数。怎么求与该数不互质的数的个数?首先对原来的数质因子分解,把这些质因子的全部组合枚举出来,每一个质因子最多使用一次,得到若干个质因子的组合为ansNum,使用容斥原理,观察ansNum的质因子的个数。若是奇数就加上全部能被ansNum整数的数的个数。否则就减去。这样求出蓝边数。红边数也就已知了。
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <bitset>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL __int64
//#define LL long long
#define eps 1e-9
#define PI acos(-1.0)
using namespace std;
const LL INF = 1<<30;
const int maxn = 100010;
int test;
LL n;
int a[maxn],num[maxn];
int prime[maxn];
bool flag[maxn];
int fact[maxn][20];
int coun[maxn];
void getPrime()
{
memset(flag,0,sizeof(flag));
flag[1] = true;
prime[0] = 0;
for(int i = 2; i < maxn; i++)
{
if(flag[i] == false)
prime[++prime[0]] = i;
for(int j = 1; j <= prime[0]&&i*prime[j] < maxn; j++)
{
flag[prime[j]*i] = true;
if(i%prime[j] == 0)
break;
}
}
}
void getFact(int dig, int pos)
{
int tmp = dig;
for(int i = 1; i <= prime[0] && prime[i]*prime[i] <= tmp; i++)
{
if(tmp % prime[i] == 0)
{
fact[pos][coun[pos]++] = prime[i];
while(tmp % prime[i] == 0)
tmp /= prime[i];
}
if(tmp == 1)
break;
}
if(tmp > 1)
fact[pos][coun[pos]++] = tmp;
}
void init()
{
for(int i = 2; i <= 100000; i++)
{
for(int j = i+i; j <= 100000; j += i)
num[i] += num[j];
}
}
int main()
{
getPrime();
scanf("%d",&test);
while(test--)
{
memset(num,0,sizeof(num));
scanf("%I64d",&n);
for(int i = 1; i <= n; i++)
{
scanf("%d",&a[i]);
num[a[i]]++;
}
init();
memset(coun,0,sizeof(coun));
LL ans = 0;
for(int i = 1; i <= n; i++)
{
LL res = 0;
getFact(a[i], i);
for(int j = 1; j < (1<<coun[i]); j++)
{
LL ansNum = 1;
int cnt = 0;
for(int k = 0; k < coun[i]; k++)
{
if(j & (1<<k) )
{
ansNum *= fact[i][k];
cnt++;
}
}
if(cnt & 1)
res += (num[ansNum]-1);
else
res -= (num[ansNum]-1);
}
ans += (n-1-res)*res;
}
ans = n*(n-1)*(n-2)/6 - ans/2; //注意n为LL
printf("%I64d\n",ans);
}
return 0;
}
标签:
原文地址:http://www.cnblogs.com/mengfanrong/p/5062885.html