码迷,mamicode.com
首页 > 其他好文 > 详细

hoj 1004 Prime Palindromes(还是不够完美)

时间:2015-12-26 14:50:19      阅读:198      评论:0      收藏:0      [点我收藏+]

标签:

The number 151 is a prime palindrome because it is both a prime number and a palindrome (it is the same number when read forward as backward). Write a program that finds all prime palindromes in the range of two supplied numbers a and b (5 <= a < b <= 1000,000,000); both a and b are considered to be within the range .

Input

Line 1: Two integers, a and b

Output

The list of palindromic primes in numerical order, one per line.

Sample Input

5 500

Sample Output

5
7
11
101
131
151
181
191
313
353
373
383
 
分析:这道题从昨天下午一直困扰我到今天中午,第一次打直接暴力搜索,超时。后来查阅一些资料,发现原来的暴搜需要一些剪枝,首先除了11以外的所有位数为偶数的回文数都不是质数。
证明:先设出一般形式:an...a2a1a1a2...an.然后可将其改写(首尾两两依次配对):
an...a2a1a1a2...an=an*(10^(2n-1)+1)+...+a2*(10^(2*2-1)+1)*10^(n-2)+a1*(10^(2*1-1)+1)*10^(n-1)
可以看到求和的每一项均有因式10^(2k-1)+1,而该因式可以化为(11-1)^(2k-1)+1,进行二项式展开就可以得证了.这样一来我们的时间复杂度会得到大幅度降低。
 
还有一点就是我们不需要判断回文数,而是需要构造符合条件的回文数,然后判断其是否是素数。这样假如我们需要判断5-1000000000的范围,我们只需要5-100000即可。我的代码是这样的:
#include <stdio.h>
#include <math.h>
int prime(int a)
{
    int i;
    for(i=2;i<=sqrt(a);i++)
        if(a%i==0)
            return 0;
    return 1;
}
int getlength(int a)
{
    int count=0;
    do{
        a/=10;
        count++;
    } while(a);
    return count;
}
int gethigh(int a)
{
    do{
        a/=10;
    } while(a/10!=0);
    return a;
}
int main()
{
    int i,a,b,len,t,sum,tmp;
    scanf("%d %d",&a,&b);
    len=getlength(b);
    if(len%2)
        len=(len+1)/2;
    else
        len=len/2;                  //数据只需要枚举到一半翻折构造回文数
    t=pow(10,len);
    for(i=a;i<t;i++)
    {
        if(i==5||i==7)
            printf("%d\n",i);
        else if(i==9)
            printf("%d\n",11);
        else{
        for(sum=i,tmp=i/10;tmp!=0;tmp/=10){
            sum=sum*10+tmp%10;
        }
        if(prime(sum)&&sum<=b&&sum>=a)
            printf("%d\n",sum);
        else if(sum>b)
            break;
        else
            continue;
        }
    }


    return 0;
}

AC了,但我其实还是不满意,因为我的代码枚举到1000000000需要30多秒,网上有很多其他的方法,但大都是C++实现的。这也体现出CPP在解决算法竞赛方面的巨大优势,还有一些地方可以完善比如首位为2,4,6,8,5的数其实不需要我们翻折,因为他们肯定不是素数。所以这些地方都可以优化,但我现在的代码结构貌似没法进行这种优化了。希望能有人写出完美的优化吧。

hoj 1004 Prime Palindromes(还是不够完美)

标签:

原文地址:http://www.cnblogs.com/kugwzk/p/5077954.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!