码迷,mamicode.com
首页 > 其他好文 > 详细

动态规划初步

时间:2015-12-26 20:54:18      阅读:358      评论:0      收藏:0      [点我收藏+]

标签:

经典问题一:最大连续子段和问题

原文借鉴 风仲达 :http://blog.csdn.net/liufeng_king/article/details/8632430

(给自己看的,抄一下也没问题吧~~~)

问题: 给出一段数字,假设有n个,有正有负,要你求最大的连续字段和。如:( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其和为20。

  白痴的枚举法(n^3)的解法就不说了。

下面主要介绍两种方法:

(1)分治法求解 

分治法思路如下:

    将序列a[1:n]分成长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大字段和,则a[1:n]的最大子段和有三中情形:

    [1]、a[1:n]的最大子段和与a[1:n/2]的最大子段和相同; 

       [2]、a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同;

    [3]、a[1:n]的最大字段和为技术分享,且1<=i<=n/2,n/2+1<=j<=n。

    可用递归方法求得情形[1],[2]。对于情形[3],可以看出a[n/2]与a[n/2+1]在最优子序列中。因此可以在a[1:n/2]中计算出技术分享,并在a[n/2+1:n]中计算出技术分享。则s1+s2即为出现情形[3]时的最优值。

  具体代码如下:

//3d4-1 最大子段和问题的分治算法
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSubSum(int *a,int left,int right);
int MaxSum(int n,int *a);

int main()
{
    int a[] = {-2,11,-4,13,-5,-2};

    for(int i=0; i<6; i++)
    {
        cout<<a[i]<<" ";
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum(6,a)<<endl;

    return 0;
}

int MaxSubSum(int *a,int left,int right)
{    
    int sum = 0;
    if(left == right)
    {
        sum = a[left]>0?a[left]:0;
    }
    else
    {
        int center = (left+right)/2;
        int leftsum = MaxSubSum(a,left,center);
        int rightsum = MaxSubSum(a,center+1,right);

        int s1 = 0;
        int lefts = 0;
        for(int i=center; i>=left;i--)
        {
            lefts += a[i];
            if(lefts>s1)
            {
                s1=lefts;
            }
        }

        int s2 = 0;
        int rights = 0;
        for(int i=center+1; i<=right;i++)
        {
            rights += a[i];
            if(rights>s2)
            {
                s2=rights;
            }
        }
        sum = s1+s2;
        if(sum<leftsum)
        {
            sum = leftsum;
        }
        if(sum<rightsum)
        {
            sum = rightsum;
        }

    }
    return sum;
}

int MaxSum(int n,int *a)
{
    return MaxSubSum(a,0,n-1);
}

算法所需的计算时间T(n)满足一下递归式:

技术分享

     解此递归方程可知:T(n)=O(nlogn)。

 

(2)动态规划算法求解  

算法思路如下:

    记技术分享,则所求的最大子段和为:技术分享

    由b[j]的定义知,当b[j-1]>0时,b[j]=b[j-1]+a[j],否则b[j]=a[j]。由此可得b[j]的动态规划递推式如下:

     b[j]=max{b[j-1]+a[j],a[j]},1<=j<=n。

     具体代码如下:

//3d4-1 最大子段和问题的动态规划算法
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSum(int n,int *a);

int main()
{
    int a[] = {-2,11,-4,13,-5,-2};

    for(int i=0; i<6; i++)
    {
        cout<<a[i]<<" ";
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum(6,a)<<endl;

    return 0;
}

int MaxSum(int n,int *a)
{
    int sum=0,b=0;
    for(int i=1; i<=n; i++)
    {
        if(b>0)
        {
            b+=a[i];
        }
        else
        {
            b=a[i];
        }
        if(b>sum)
        {
            sum = b;
        }
    }
    return sum;
}

 

经典问题二:最大子矩阵和问题

(1)问题描述:给定一个m行n列的整数矩阵A,试求A的一个子矩阵,时期各元素之和为最大。

(2)问题分析:

      用二维数组a[1:m][1:n]表示给定的m行n列的整数矩阵。子数组a[i1:i2][j1:j2]表示左上角和右下角行列坐标分别为(i1,j1)和(i2,j2)的子矩阵,其各元素之和记为:技术分享

      最大子矩阵问题的最优值为技术分享。如果用直接枚举的方法解最大子矩阵和问题,需要O(m^2n^2)时间。注意到技术分享,式中,技术分享,设技术分享,则技术分享

容易看出,这正是一维情形的最大子段和问题。因此,借助最大子段和问题的动态规划算法MaxSum,可设计出最大子矩阵和动态规划算法如下:

//3d4-5 最大子矩阵之和问题
#include "stdafx.h"
#include <iostream> 
using namespace std; 

const int M=4;
const int N=3;

int MaxSum(int n,int *a);
int MaxSum2(int m,int n,int a[M][N]);

int main()
{
    int a[][N] = {{4,-2,9},{-1,3,8},{-6,7,6},{0,9,-5}};

    for(int i=0; i<M; i++)
    {
        for(int j=0; j<N; j++)
        {
            cout<<a[i][j]<<" ";
        }
        cout<<endl;
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum2(M,N,a)<<endl;

    return 0;
}

int MaxSum2(int m,int n,int a[M][N])
{
    int sum = 0;
    int *b = new int[n+1];
    for(int i=0; i<m; i++)//枚举行
    {
        for(int k=0; k<n;k++)
        {
            b[k]=0;
        }

        for(int j=i;j<m;j++)//枚举初始行i,结束行j
        {
            for(int k=0; k<n; k++)
            {
                b[k] += a[j][k];//b[k]为纵向列之和
                int max = MaxSum(n,b);
                if(max>sum)
                {
                    sum = max;
                }
            }
        }
    }
    return sum;
}

int MaxSum(int n,int *a)
{
    int sum=0,b=0;
    for(int i=1; i<=n; i++)
    {
        if(b>0)
        {
            b+=a[i];
        }
        else
        {
            b=a[i];
        }
        if(b>sum)
        {
            sum = b;
        }
    }
    return sum;
}

以上代码MaxSum2方法的执行过程可用下图表示:

技术分享

经典问题三:求最大m子段和问题

 

动态规划初步

标签:

原文地址:http://www.cnblogs.com/topW2W/p/5078817.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!