码迷,mamicode.com
首页 > 其他好文 > 详细

内核hlist的使用

时间:2015-12-29 12:33:50      阅读:398      评论:0      收藏:0      [点我收藏+]

标签:

189 struct hlist_head {
190         struct hlist_node *first;
191 };
192 
193 struct hlist_node {
194         struct hlist_node *next, **pprev;
195 };

hlist_head表示哈希表的头结点,是hash数组的一个元素。

哈希表中每一个entry(hlist_head)所对应的都是一个链表(hlist),该链表的结点由hlist_node表示。

 

hlist_head结构体只有一个域,即first。 first指针指向该hlist链表的第一个节点。

hlist_node结构体有两个域,next 和pprev。 next指针很容易理解,它指向下个hlist_node结点,倘若该节点是链表的最后一个节点,next指向NULL。

pprev是一个二级指针, 它指向前一个节点的next指针。为什么我们需要这样一个指针呢?它的好处是什么?

在回答这个问题之前,我们先研究另一个问题:为什么散列表的实现需要两个不同的数据结构?

散列表的目的是为了方便快速的查找,所以散列表通常是一个比较大的数组,否则“冲突”的概率会非常大, 这样也就失去了散列表的意义。如何做到既能维护一张大表,又能不使用过多的内存呢?就只能从数据结构上下功夫了。所以对于散列表的每个entry,它的结构体中只存放一个指针,解决了占用空间的问题。

现在又出现了另一个问题:数据结构不一致。显然,如果hlist_node采用传统的next,prev指针, 对于第一个节点和后面其他节点的处理会不一致。这样并不优雅,而且效率上也有损失。

hlist_node巧妙地将pprev指向上一个节点的next指针的地址,由于hlist_head和hlist_node指向的下一个节点的指针类型相同,这样就解决了通用性!

 

技术分享

 

 

以IP分片时hlist使用为例,说明一下hlist的使用。

 

 31 /**
 32  * struct inet_frag_queue - fragment queue
 33  *
 34  * @lock: spinlock protecting the queue
 35  * @timer: queue expiration timer
 36  * @list: hash bucket list
 37  * @refcnt: reference count of the queue
 38  * @fragments: received fragments head
 39  * @fragments_tail: received fragments tail
 40  * @stamp: timestamp of the last received fragment
 41  * @len: total length of the original datagram
 42  * @meat: length of received fragments so far
 43  * @flags: fragment queue flags
 44  * @max_size: maximum received fragment size
 45  * @net: namespace that this frag belongs to
 46  * @list_evictor: list of queues to forcefully evict (e.g. due to low memory)
 47  */
 48 struct inet_frag_queue {
 49         spinlock_t              lock;
 50         struct timer_list       timer;
 51         struct hlist_node       list;   //hash节点
 52         atomic_t                refcnt;
 53         struct sk_buff          *fragments;
 54         struct sk_buff          *fragments_tail;
 55         ktime_t                 stamp;
 56         int                     len;
 57         int                     meat;
 58         __u8                    flags;
 59         u16                     max_size;
 60         struct netns_frags      *net;
 61         struct hlist_node       list_evictor;
 62 };
 63 
 64 #define INETFRAGS_HASHSZ        1024  //hash数组的大小
 65 
 66 /* averaged:
 67  * max_depth = default ipfrag_high_thresh / INETFRAGS_HASHSZ /
 68  *             rounded up (SKB_TRUELEN(0) + sizeof(struct ipq or
 69  *             struct frag_queue))
 70  */
 71 #define INETFRAGS_MAXDEPTH      128
 72 
 73 struct inet_frag_bucket {
 74         struct hlist_head       chain;  //hash冲突链表
 75         spinlock_t              chain_lock;
 76 };
 77 
 78 struct inet_frags {
 79         struct inet_frag_bucket hash[INETFRAGS_HASHSZ];  //hash数组
 80 
 81         struct work_struct      frags_work;
 82         unsigned int next_bucket;
 83         unsigned long last_rebuild_jiffies;
 84         bool rebuild;
 85 
 86         /* The first call to hashfn is responsible to initialize
 87          * rnd. This is best done with net_get_random_once.
 88          *
 89          * rnd_seqlock is used to let hash insertion detect
 90          * when it needs to re-lookup the hash chain to use.
 91          */
 92         u32                     rnd;
 93         seqlock_t               rnd_seqlock;
 94         int                     qsize;
 95 
 96         unsigned int            (*hashfn)(const struct inet_frag_queue *);
 97         bool                    (*match)(const struct inet_frag_queue *q,
 98                                          const void *arg);
 99         void                    (*constructor)(struct inet_frag_queue *q,
100                                                const void *arg);
101         void                    (*destructor)(struct inet_frag_queue *);
102         void                    (*skb_free)(struct sk_buff *);
103         void                    (*frag_expire)(unsigned long data);
104         struct kmem_cache       *frags_cachep;
105         const char              *frags_cache_name;
106 };

 

 

  1 /*
  2  * inet fragments management
  3  *
  4  *              This program is free software; you can redistribute it and/or
  5  *              modify it under the terms of the GNU General Public License
  6  *              as published by the Free Software Foundation; either version
  7  *              2 of the License, or (at your option) any later version.
  8  *
  9  *              Authors:        Pavel Emelyanov <xemul@openvz.org>
 10  *                              Started as consolidation of ipv4/ip_fragment.c,
 11  *                              ipv6/reassembly. and ipv6 nf conntrack reassembly
 12  */
 13 
 14 #include <linux/list.h>
 15 #include <linux/spinlock.h>
 16 #include <linux/module.h>
 17 #include <linux/timer.h>
 18 #include <linux/mm.h>
 19 #include <linux/random.h>
 20 #include <linux/skbuff.h>
 21 #include <linux/rtnetlink.h>
 22 #include <linux/slab.h>
 23 
 24 #include <net/sock.h>
 25 #include <net/inet_frag.h>
 26 #include <net/inet_ecn.h>
 27 
 28 #define INETFRAGS_EVICT_BUCKETS   128
 29 #define INETFRAGS_EVICT_MAX       512
 30 
 31 /* don‘t rebuild inetfrag table with new secret more often than this */
 32 #define INETFRAGS_MIN_REBUILD_INTERVAL (5 * HZ)
 33 
 34 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
 35  * Value : 0xff if frame should be dropped.
 36  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
 37  */
 38 const u8 ip_frag_ecn_table[16] = {
 39         /* at least one fragment had CE, and others ECT_0 or ECT_1 */
 40         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]                      = INET_ECN_CE,
 41         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]                      = INET_ECN_CE,
 42         [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]   = INET_ECN_CE,
 43 
 44         /* invalid combinations : drop frame */
 45         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
 46         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
 47         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
 48         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
 49         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
 50         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
 51         [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
 52 };
 53 EXPORT_SYMBOL(ip_frag_ecn_table);
 54 
 55 static unsigned int   //hash函数
 56 inet_frag_hashfn(const struct inet_frags *f, const struct inet_frag_queue *q)
 57 {
 58         return f->hashfn(q) & (INETFRAGS_HASHSZ - 1);
 59 }
 60 
 61 static bool inet_frag_may_rebuild(struct inet_frags *f)
 62 {
 63         return time_after(jiffies,
 64                f->last_rebuild_jiffies + INETFRAGS_MIN_REBUILD_INTERVAL);
 65 }
 66 
 67 static void inet_frag_secret_rebuild(struct inet_frags *f)
 68 {
 69         int i;
 70 
 71         write_seqlock_bh(&f->rnd_seqlock);
 72 
 73         if (!inet_frag_may_rebuild(f))
 74                 goto out;
 75 
 76         get_random_bytes(&f->rnd, sizeof(u32));
 77 
 78         for (i = 0; i < INETFRAGS_HASHSZ; i++) {
 79                 struct inet_frag_bucket *hb;
 80                 struct inet_frag_queue *q;
 81                 struct hlist_node *n;
 82 
 83                 hb = &f->hash[i];
 84                 spin_lock(&hb->chain_lock);
 85 
 86                 hlist_for_each_entry_safe(q, n, &hb->chain, list) {//安全遍历所有hash冲突链表
 87                         unsigned int hval = inet_frag_hashfn(f, q);  //计算hash值
 88 
 89                         if (hval != i) {
 90                                 struct inet_frag_bucket *hb_dest;
 91 
 92                                 hlist_del(&q->list);
 93 
 94                                 /* Relink to new hash chain. */
 95                                 hb_dest = &f->hash[hval];  //hash冲突链表
 96 
 97                                 /* This is the only place where we take
 98                                  * another chain_lock while already holding
 99                                  * one.  As this will not run concurrently,
100                                  * we cannot deadlock on hb_dest lock below, if its
101                                  * already locked it will be released soon since
102                                  * other caller cannot be waiting for hb lock
103                                  * that we‘ve taken above.
104                                  */
105                                 spin_lock_nested(&hb_dest->chain_lock,
106                                                  SINGLE_DEPTH_NESTING);

                     //把节点list加入到hash冲突链表chain里面
107 hlist_add_head(&q->list, &hb_dest->chain); 108 spin_unlock(&hb_dest->chain_lock); 109 } 110 } 111 spin_unlock(&hb->chain_lock); 112 } 113 114 f->rebuild = false; 115 f->last_rebuild_jiffies = jiffies; 116 out: 117 write_sequnlock_bh(&f->rnd_seqlock); 118 } 119 120 static bool inet_fragq_should_evict(const struct inet_frag_queue *q) 121 { 122 return q->net->low_thresh == 0 || 123 frag_mem_limit(q->net) >= q->net->low_thresh; 124 } 125 126 static unsigned int 127 inet_evict_bucket(struct inet_frags *f, struct inet_frag_bucket *hb) 128 { 129 struct inet_frag_queue *fq; 130 struct hlist_node *n; 131 unsigned int evicted = 0; 132 HLIST_HEAD(expired); 133 134 spin_lock(&hb->chain_lock); 135 136 hlist_for_each_entry_safe(fq, n, &hb->chain, list) { 137 if (!inet_fragq_should_evict(fq)) 138 continue; 139 140 if (!del_timer(&fq->timer)) 141 continue; 142 143 hlist_add_head(&fq->list_evictor, &expired); 144 ++evicted; 145 } 146 147 spin_unlock(&hb->chain_lock); 148 149 hlist_for_each_entry_safe(fq, n, &expired, list_evictor) 150 f->frag_expire((unsigned long) fq); 151 152 return evicted; 153 } 154 155 static void inet_frag_worker(struct work_struct *work) 156 { 157 unsigned int budget = INETFRAGS_EVICT_BUCKETS; 158 unsigned int i, evicted = 0; 159 struct inet_frags *f; 160 161 f = container_of(work, struct inet_frags, frags_work); 162 163 BUILD_BUG_ON(INETFRAGS_EVICT_BUCKETS >= INETFRAGS_HASHSZ); 164 165 local_bh_disable(); 166 167 for (i = ACCESS_ONCE(f->next_bucket); budget; --budget) { 168 evicted += inet_evict_bucket(f, &f->hash[i]); 169 i = (i + 1) & (INETFRAGS_HASHSZ - 1); 170 if (evicted > INETFRAGS_EVICT_MAX) 171 break; 172 } 173 174 f->next_bucket = i; 175 176 local_bh_enable(); 177 178 if (f->rebuild && inet_frag_may_rebuild(f)) 179 inet_frag_secret_rebuild(f); 180 } 181 182 static void inet_frag_schedule_worker(struct inet_frags *f) 183 { 184 if (unlikely(!work_pending(&f->frags_work))) 185 schedule_work(&f->frags_work); 186 } 187 188 int inet_frags_init(struct inet_frags *f) 189 { 190 int i; 191 192 INIT_WORK(&f->frags_work, inet_frag_worker); 193 194 for (i = 0; i < INETFRAGS_HASHSZ; i++) { //初始化hash数组中所有的元素 195 struct inet_frag_bucket *hb = &f->hash[i]; 196 197 spin_lock_init(&hb->chain_lock); //初始化一个hash冲突链表 198 INIT_HLIST_HEAD(&hb->chain); 199 } 200 201 seqlock_init(&f->rnd_seqlock); 202 f->last_rebuild_jiffies = 0; 203 f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0, 204 NULL); 205 if (!f->frags_cachep) 206 return -ENOMEM; 207 208 return 0; 209 } 210 EXPORT_SYMBOL(inet_frags_init); 211 212 void inet_frags_init_net(struct netns_frags *nf) 213 { 214 init_frag_mem_limit(nf); 215 } 216 EXPORT_SYMBOL(inet_frags_init_net); 217 218 void inet_frags_fini(struct inet_frags *f) 219 { 220 cancel_work_sync(&f->frags_work); 221 kmem_cache_destroy(f->frags_cachep); 222 } 223 EXPORT_SYMBOL(inet_frags_fini); 224 225 void inet_frags_exit_net(struct netns_frags *nf, struct inet_frags *f) 226 { 227 unsigned int seq; 228 int i; 229 230 nf->low_thresh = 0; 231 232 evict_again: 233 local_bh_disable(); 234 seq = read_seqbegin(&f->rnd_seqlock); 235 236 for (i = 0; i < INETFRAGS_HASHSZ ; i++) 237 inet_evict_bucket(f, &f->hash[i]); 238 239 local_bh_enable(); 240 cond_resched(); 241 242 if (read_seqretry(&f->rnd_seqlock, seq) || 243 percpu_counter_sum(&nf->mem)) 244 goto evict_again; 245 246 percpu_counter_destroy(&nf->mem); 247 } 248 EXPORT_SYMBOL(inet_frags_exit_net); 249 250 static struct inet_frag_bucket * 251 get_frag_bucket_locked(struct inet_frag_queue *fq, struct inet_frags *f) 252 __acquires(hb->chain_lock) 253 { 254 struct inet_frag_bucket *hb; 255 unsigned int seq, hash; 256 257 restart: 258 seq = read_seqbegin(&f->rnd_seqlock); 259 260 hash = inet_frag_hashfn(f, fq); 261 hb = &f->hash[hash]; 262 263 spin_lock(&hb->chain_lock); 264 if (read_seqretry(&f->rnd_seqlock, seq)) { 265 spin_unlock(&hb->chain_lock); 266 goto restart; 267 } 268 269 return hb; 270 } 271 272 static inline void fq_unlink(struct inet_frag_queue *fq, struct inet_frags *f) 273 { 274 struct inet_frag_bucket *hb; 275 276 hb = get_frag_bucket_locked(fq, f); 277 hlist_del(&fq->list); 278 fq->flags |= INET_FRAG_COMPLETE; 279 spin_unlock(&hb->chain_lock); 280 } 281 282 void inet_frag_kill(struct inet_frag_queue *fq, struct inet_frags *f) 283 { 284 if (del_timer(&fq->timer)) 285 atomic_dec(&fq->refcnt); 286 287 if (!(fq->flags & INET_FRAG_COMPLETE)) { 288 fq_unlink(fq, f); 289 atomic_dec(&fq->refcnt); 290 } 291 } 292 EXPORT_SYMBOL(inet_frag_kill); 293 294 static inline void frag_kfree_skb(struct netns_frags *nf, struct inet_frags *f, 295 struct sk_buff *skb) 296 { 297 if (f->skb_free) 298 f->skb_free(skb); 299 kfree_skb(skb); 300 } 301 302 void inet_frag_destroy(struct inet_frag_queue *q, struct inet_frags *f) 303 { 304 struct sk_buff *fp; 305 struct netns_frags *nf; 306 unsigned int sum, sum_truesize = 0; 307 308 WARN_ON(!(q->flags & INET_FRAG_COMPLETE)); 309 WARN_ON(del_timer(&q->timer) != 0); 310 311 /* Release all fragment data. */ 312 fp = q->fragments; 313 nf = q->net; 314 while (fp) { 315 struct sk_buff *xp = fp->next; 316 317 sum_truesize += fp->truesize; 318 frag_kfree_skb(nf, f, fp); 319 fp = xp; 320 } 321 sum = sum_truesize + f->qsize; 322 323 if (f->destructor) 324 f->destructor(q); 325 kmem_cache_free(f->frags_cachep, q); 326 327 sub_frag_mem_limit(nf, sum); 328 } 329 EXPORT_SYMBOL(inet_frag_destroy); 330 331 static struct inet_frag_queue *inet_frag_intern(struct netns_frags *nf, 332 struct inet_frag_queue *qp_in, 333 struct inet_frags *f, 334 void *arg) 335 { 336 struct inet_frag_bucket *hb = get_frag_bucket_locked(qp_in, f); 337 struct inet_frag_queue *qp; 338 339 #ifdef CONFIG_SMP 340 /* With SMP race we have to recheck hash table, because 341 * such entry could have been created on other cpu before 342 * we acquired hash bucket lock. 343 */ 344 hlist_for_each_entry(qp, &hb->chain, list) { 345 if (qp->net == nf && f->match(qp, arg)) { 346 atomic_inc(&qp->refcnt); 347 spin_unlock(&hb->chain_lock); 348 qp_in->flags |= INET_FRAG_COMPLETE; 349 inet_frag_put(qp_in, f); 350 return qp; 351 } 352 } 353 #endif 354 qp = qp_in; 355 if (!mod_timer(&qp->timer, jiffies + nf->timeout)) 356 atomic_inc(&qp->refcnt); 357 358 atomic_inc(&qp->refcnt); 359 hlist_add_head(&qp->list, &hb->chain); 360 361 spin_unlock(&hb->chain_lock); 362 363 return qp; 364 } 365 366 static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf, 367 struct inet_frags *f, 368 void *arg) 369 { 370 struct inet_frag_queue *q; 371 372 if (frag_mem_limit(nf) > nf->high_thresh) { 373 inet_frag_schedule_worker(f); 374 return NULL; 375 } 376 377 q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC); 378 if (!q) 379 return NULL; 380 381 q->net = nf; 382 f->constructor(q, arg); 383 add_frag_mem_limit(nf, f->qsize); 384 385 setup_timer(&q->timer, f->frag_expire, (unsigned long)q); 386 spin_lock_init(&q->lock); 387 atomic_set(&q->refcnt, 1); 388 389 return q; 390 } 391 392 static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf, 393 struct inet_frags *f, 394 void *arg) 395 { 396 struct inet_frag_queue *q; 397 398 q = inet_frag_alloc(nf, f, arg); 399 if (!q) 400 return NULL; 401 402 return inet_frag_intern(nf, q, f, arg); 403 } 404 405 struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, 406 struct inet_frags *f, void *key, 407 unsigned int hash) 408 { 409 struct inet_frag_bucket *hb; 410 struct inet_frag_queue *q; 411 int depth = 0; 412 413 if (frag_mem_limit(nf) > nf->low_thresh) 414 inet_frag_schedule_worker(f); 415 416 hash &= (INETFRAGS_HASHSZ - 1); 417 hb = &f->hash[hash]; 418 419 spin_lock(&hb->chain_lock); 420 hlist_for_each_entry(q, &hb->chain, list) { 421 if (q->net == nf && f->match(q, key)) { 422 atomic_inc(&q->refcnt); 423 spin_unlock(&hb->chain_lock); 424 return q; 425 } 426 depth++; 427 } 428 spin_unlock(&hb->chain_lock); 429 430 if (depth <= INETFRAGS_MAXDEPTH) 431 return inet_frag_create(nf, f, key); 432 433 if (inet_frag_may_rebuild(f)) { 434 if (!f->rebuild) 435 f->rebuild = true; 436 inet_frag_schedule_worker(f); 437 } 438 439 return ERR_PTR(-ENOBUFS); 440 } 441 EXPORT_SYMBOL(inet_frag_find); 442 443 void inet_frag_maybe_warn_overflow(struct inet_frag_queue *q, 444 const char *prefix) 445 { 446 static const char msg[] = "inet_frag_find: Fragment hash bucket" 447 " list length grew over limit " __stringify(INETFRAGS_MAXDEPTH) 448 ". Dropping fragment.\n"; 449 450 if (PTR_ERR(q) == -ENOBUFS) 451 net_dbg_ratelimited("%s%s", prefix, msg); 452 } 453 EXPORT_SYMBOL(inet_frag_maybe_warn_overflow); 454

 

内核hlist的使用

标签:

原文地址:http://www.cnblogs.com/mylinuxer/p/5084991.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!