标签:
1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余。
2、 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩。我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关。那是不是可以合并第一项和第二项呢?
3、 拿到一个样本,特征非常多,而样例特别少,这样用回归去直接拟合非常困难,容易过度拟合。比如北京的房价:假设房子的特征是(大小、位置、朝向、是否学区房、建造年代、是否二手、层数、所在层数),搞了这么多特征,结果只有不到十个房子的样例。要拟合房子特征‐>房价的这么多特征,就会造成过度拟合。
4、 这个与第二个有点类似, 假设在 IR 中我们建立的文档‐词项矩阵中, 有两个词项为 “learn”和“study” ,在传统的向量空间模型中,认为两者独立。然而从语义的角度来讲,两者是相似的,而且两者出现频率也类似,是不是可以合成为一个特征呢?
5、 在信号传输过程中,由于信道不是理想的,信道另一端收到的信号会有噪音扰动,那么怎么滤去这些噪音呢?
将 n维特征映射到 k 维上(k<n) ,这 k 维是全新的正交特征。这 k 维特征称为主元,是重新构造出来的 k 维特征,而不是简单地从 n 维特征中去除其余 n‐k 维特征。
最大方差理论、最小平方误差理论、坐标轴相关度理论
假设我们得到的 2 维数据如下:
行代表样例,列代表特征,这里有 10 个样例,每个样例两个特征。
第一步,分别求 x 和 y 的平均值,然后对于所有的样例,都减去对应的均值。
这里 x 的均值是 1.81,y 的均值是 1.91,减去后得到
若样本特征之间的方差存在明显差异,需要对特征做方差归一化(可省略)。求每个特征的标准差σ,然后对每个样例在该特征下的数据除以σ。
第二步,求特征协方差矩阵。
如果数据是 3 维,那么协方差矩阵是
这里只有 x 和 y,求解得
注:对角线上分别是 x 和 y 的方差,非对角线上是协方差。
l 协方差 > 0时,表示 x 和 y 若有一个增,另一个也增;
l 协方差 < 0时,表示一个增,一个减;
l 协方差 = 0 时,两者独立。
l 协方差绝对值越大,两者对彼此的影响越大,反之越小。
求解协方差流程:
第三步,求协方差的特征值和特征向量,得到
这里的特征向量都归一化为单位向量。
第四步,将特征值按照从大到小的顺序排序,选择其中最大的 k 个,然后将其对应的 k个特征向量分别作为列向量组成特征向量矩阵。
第五步,将样本点投影到选取的特征向量上。
假设样例数为 m,特征数为 n,减去均值后的样本矩阵为 DataAdjust(m*n),协方差矩阵是 n*n,选取的 k 个特征向量组成的矩阵为EigenVectors(n*k)。
那么投影后的数据为
这样,就将原始样例的 n 维特征变成了 k 维,这 k 维就是原始特征在 k 维上的投影。
本案例令k=1,得到结果:
在信号处理中认为信号具有较大的方差, 噪声有较小的方差, 信噪比就是信号与噪声的方差比,越大越好。
如下图所示,样本在横轴上的投影方差较大, 在纵轴上的投影方差较小,那么认为纵轴上的投影是由噪声引起的。因此我们认为,最好的k维特征,是将n维样本点转换为k维后,每一维上的样本方差都很大。
对于下图的5个样本点,假设我们选择两条不同的直线做投影。根据方差最大化理论,左边的好,因为左边投影后的样本点之间的方差最大。
投影
1) 红色点表示样例
2) 蓝色点是在u上的投影点,离原点的距离是<>(即或)
3) u是直线的斜率,也是直线的方向向量,而且是单位向量。
4) 样本点(样例)的每一维特征的均值,和投影到 u上的样本点的均值相等。
最佳的投影向量u,可以使得投影后的样本点方差最大。
在本案例中,已知均值为0,因此方差为
因此,λ就是Σ的特征值,u 是特征向量。最佳的投影直线,是特征值λ最大时对应的特征向量。我们只需要对协方差矩阵进行特征值分解,得到的前 k 大特征值对应的特征向量就是最佳的k维新特征,而且这k维新特征是正交的。
获得的新样本为:,其中的第 j 维就是在上的投影。
通过选取最大的 k 个 u,使得方差较小的特征(如噪声)被丢弃。
PCA——主成分分析(Principal components analysis )
标签:
原文地址:http://www.cnblogs.com/sweetyu/p/5085798.html