标签:
#include <iostream> #include <cmath> #include <vector> #include <string.h> #include <stdlib.h> #include <algorithm> using namespace std; #define MAX_N 110 /////////////////////////////////////////////////////////////////// //常量区 const double INF = 1e10; // 无穷大 const double EPS = 1e-8; // 计算精度 const double PI = acos(-1.0);// PI /////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////// //类型定义区 struct Point { // 二维点或矢量 double x, y; double angle, dis; Point() {} Point(double x0, double y0): x(x0), y(y0) {} }; struct Point3D { //三维点或矢量 double x, y, z; Point3D() {} Point3D(double x0, double y0, double z0): x(x0), y(y0), z(z0) {} }; struct Line { // 二维的直线或线段 Point p1, p2; Line() {} Line(Point p10, Point p20): p1(p10), p2(p20) {} }; struct Line3D { // 三维的直线或线段 Point3D p1, p2; Line3D() {} Line3D(Point3D p10, Point3D p20): p1(p10), p2(p20) {} }; struct Rect { // 用长宽表示矩形的方法 w, h分别表示宽度和高度 double w, h; Rect() {} Rect(double _w,double _h) : w(_w),h(_h) {} }; struct Rect_2 { // 表示矩形,左下角坐标是(xl, yl),右上角坐标是(xh, yh) double xl, yl, xh, yh; Rect_2() {} Rect_2(double _xl,double _yl,double _xh,double _yh) : xl(_xl),yl(_yl),xh(_xh),yh(_yh) {} }; struct Circle { //圆 Point c; double r; Circle() {} Circle(Point _c,double _r) :c(_c),r(_r) {} }; typedef vector<Point> Polygon; // 二维多边形 typedef vector<Point> Points; // 二维点集 typedef vector<Point3D> Points3D; // 三维点集 /////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////// //基本函数区 inline double max(double x,double y) { return x > y ? x : y; } inline double min(double x, double y) { return x > y ? y : x; } inline bool ZERO(double x) // x == 0 { return (fabs(x) < EPS); } inline bool ZERO(Point p) // p == 0 { return (ZERO(p.x) && ZERO(p.y)); } inline bool ZERO(Point3D p) // p == 0 { return (ZERO(p.x) && ZERO(p.y) && ZERO(p.z)); } inline bool EQ(double x, double y) // eqaul, x == y { return (fabs(x - y) < EPS); } inline bool NEQ(double x, double y) // not equal, x != y { return (fabs(x - y) >= EPS); } inline bool LT(double x, double y) // less than, x < y { return ( NEQ(x, y) && (x < y) ); } inline bool GT(double x, double y) // greater than, x > y { return ( NEQ(x, y) && (x > y) ); } inline bool LEQ(double x, double y) // less equal, x <= y { return ( EQ(x, y) || (x < y) ); } inline bool GEQ(double x, double y) // greater equal, x >= y { return ( EQ(x, y) || (x > y) ); } // 注意!!! // 如果是一个很小的负的浮点数 // 保留有效位数输出的时候会出现-0.000这样的形式, // 前面多了一个负号 // 这就会导致错误!!!!!! // 因此在输出浮点数之前,一定要调用次函数进行修正! inline double FIX(double x) { return (fabs(x) < EPS) ? 0 : x; } ////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////// //二维矢量运算 bool operator==(Point p1, Point p2) { return ( EQ(p1.x, p2.x) && EQ(p1.y, p2.y) ); } bool operator!=(Point p1, Point p2) { return ( NEQ(p1.x, p2.x) || NEQ(p1.y, p2.y) ); } bool operator<(Point p1, Point p2) { if (NEQ(p1.x, p2.x)) { return (p1.x < p2.x); } else { return (p1.y < p2.y); } } Point operator+(Point p1, Point p2) { return Point(p1.x + p2.x, p1.y + p2.y); } Point operator-(Point p1, Point p2) { return Point(p1.x - p2.x, p1.y - p2.y); } double operator*(Point p1, Point p2) // 计算叉乘 p1 × p2 { return (p1.x * p2.y - p2.x * p1.y); } double operator&(Point p1, Point p2) { // 计算点积 p1·p2 return (p1.x * p2.x + p1.y * p2.y); } double Norm(Point p) // 计算矢量p的模 { return sqrt(p.x * p.x + p.y * p.y); } // 把矢量p旋转角度angle (弧度表示) // angle > 0表示逆时针旋转 // angle < 0表示顺时针旋转 Point Rotate(Point p, double angle) { Point result; result.x = p.x * cos(angle) - p.y * sin(angle); result.y = p.x * sin(angle) + p.y * cos(angle); return result; } ////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////// //三维矢量运算 bool operator==(Point3D p1, Point3D p2) { return ( EQ(p1.x, p2.x) && EQ(p1.y, p2.y) && EQ(p1.z, p2.z) ); } bool operator<(Point3D p1, Point3D p2) { if (NEQ(p1.x, p2.x)) { return (p1.x < p2.x); } else if (NEQ(p1.y, p2.y)) { return (p1.y < p2.y); } else { return (p1.z < p2.z); } } Point3D operator+(Point3D p1, Point3D p2) { return Point3D(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z); } Point3D operator-(Point3D p1, Point3D p2) { return Point3D(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); } Point3D operator*(Point3D p1, Point3D p2) // 计算叉乘 p1 x p2 { return Point3D(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x - p1.x * p2.z, p1.x * p2.y - p1.y * p2.x ); } double operator&(Point3D p1, Point3D p2) { // 计算点积 p1·p2 return (p1.x * p2.x + p1.y * p2.y + p1.z * p2.z); } double Norm(Point3D p) // 计算矢量p的模 { return sqrt(p.x * p.x + p.y * p.y + p.z * p.z); } bool OnLineSeg(Point p, Line L) // 判断二维平面上点p是否在线段l上 { return ( ZERO( (L.p1 - p) * (L.p2 - p) ) && LEQ((p.x - L.p1.x)*(p.x - L.p2.x), 0) && LEQ((p.y - L.p1.y)*(p.y - L.p2.y), 0) ); }
标签:
原文地址:http://www.cnblogs.com/chenhuan001/p/5091247.html