码迷,mamicode.com
首页 > 其他好文 > 详细

poj 2417 Discrete Logging(A^x=B(mod c),普通baby_step)

时间:2016-01-01 13:02:34      阅读:243      评论:0      收藏:0      [点我收藏+]

标签:

http://poj.org/problem?id=2417


A^x = B(mod C),已知A,B。C。求x。

这里C是素数,能够用普通的baby_step。

在寻找最小的x的过程中,将x设为i*M+j。从而原始变为A^M^i * A^j = B(mod C),D = A^M,那么D^i * A^j = B(mod C ),

预先将A^j存入hash表中,然后枚举i(0~M-1),依据扩展欧几里得求出A^j。再去hash表中查找对应的j,那么x = i*M+j。

确定x是否有解,就是在循环i的时候推断对应A^j是否有解。并且最小的解x一定在(0~C-1),由于gcd(D^i,C) = 1.

假设(0~C-1)无解,那么一定无解。

由于A^x%C(C是素数)有循环节。A^x%C = A^(x%phi[c])%C,循环节的长度为phi(C),即C-1,x >= C以后開始新一轮的循环,因此(0~C-1)内无解的话。一定无解。


#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL long long
#define _LL __int64
#define eps 1e-12
#define PI acos(-1.0)

using namespace std;
const int maxn = 499991;

bool hash[maxn+10];
int idx[maxn+10];
LL val[maxn+10];
//插入哈希表
void insert(int id, LL vv)
{
	int v = vv % maxn;
	while(hash[v] && val[v] != vv)
	{
		v++;
		if(v == maxn)
			v -= maxn;
	}
	if(!hash[v])
	{
		hash[v] = true;
		idx[v] = id;
		val[v] = vv;
	}
}
//查找vv相应的jj,A^jj = vv
int found(LL vv)
{
	int v = vv%maxn;
	while(hash[v] && val[v] != vv)
	{
		v++;
		if(v == maxn)
			v -= maxn;
	}
	if(hash[v] == false)
		return -1;
	return idx[v];
}

void extend_gcd(LL a, LL b, LL &x, LL &y)
{
	if(b == 0)
	{
		x = 1;
		y = 0;
		return;
	}
	extend_gcd(b,a%b,x,y);
	LL t = x;
	x = y;
	y = t-a/b*y;
}
/*
A^x = B(mod C)
令x = i*M+j, 当中M = ceil(sqrt(C*1.0)),(0 <= i,j < M)
那么原式变为A^M^i*A^j = B(mod c)
先枚举j(0~M-1),将A^j%C存入hash表中
令D = A^M%C,X = A^j,那么D^i*X = B(mod C)
枚举i(0~M-1)求得D^i设为DD。DD*X = B(mod C)
DD,C已知,由于C是素数,gcd(DD,C) = 1,依据扩展欧几里得知在[0,C-1]内有唯一一个解X。
然后在hash表中查找X相应的jj。即A^jj = X。

那么x = i*M+jj,若找不到jj无解。 */ LL baby_step(LL A, LL B, LL C) { memset(hash,false,sizeof(hash)); memset(idx,-1,sizeof(idx)); memset(val,-1,sizeof(val)); LL M = ceil(sqrt(C*1.0)); //将A^j存入hash表中 LL D = 1; for(int j = 0; j < M; j++) { insert(j,D); D = D*A%C; } //D = A^M%C,res = D^i,求方程res*X = B(mod C)中的X,去找X相应的jj,那么x=i*M+jj. LL res = 1,x,y; for(int i = 0; i < M; i++) { extend_gcd(res,C,x,y); x = x*B; x = (x%C+C)%C; int jj = found(x); if(jj != -1) { return (LL)i*M+jj; } res = res*D%C; } return -1; } int main() { LL A,B,C; while(~scanf("%lld %lld %lld",&C,&A,&B)) { LL res = baby_step(A,B,C); if(res == -1) printf("no solution\n"); else printf("%lld\n",res); } return 0; }



poj 2417 Discrete Logging(A^x=B(mod c),普通baby_step)

标签:

原文地址:http://www.cnblogs.com/mengfanrong/p/5093148.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!