码迷,mamicode.com
首页 > 其他好文 > 详细

Rotate Array leetcode

时间:2016-01-02 18:35:53      阅读:244      评论:0      收藏:0      [点我收藏+]

标签:

Rotate an array of n elements to the right by k steps.

For example, with n = 7 and k = 3, the array [1,2,3,4,5,6,7] is rotated to [5,6,7,1,2,3,4].

Note:
Try to come up as many solutions as you can, there are at least 3 different ways to solve this problem.

设 数组长度为n,移动步数为k

思路整理:

1.是否能通过公式计算出移动后的位置呢?

解决:假设当前位置为 a0,则移动后的位置为 a1 = (a0 + k) % n;

2.如果我们让nums[a1] = nums[a0],那么nums[a1]该怎么处理?

解决:可以计算a1位置移动后的下一个位置a2 = (a1 + k) % n,然后让nums[a2] = nums[a1],依次类推,直到下一个位置an回到起点位置 也就是 a,这样循环下去,总会将所有元素替换掉吧。

3.我试着编写出一个循环程序,提交后发现程序存在严重漏洞,如果 n % k = 0 或者 k % n = 0,我们执行这个程序会发现不能移动所有元素,比如 n = 6,k = 3,执行的操作是a0->a3,a3->a0,我们会发现a1,a2...等元素并没有替换掉。那么该怎么处理这个问题呢?

解决:抓住n % k = 0 或者 k % n = 0这种情况做分析,我发现可以加入一层外层循环,还是上面例子,外层循环是 a0,a1,a2,这样就可以保证所有元素可以替换掉了。

4.外层循环的执行次数 c 该如何限制呢?

解决:我使用了归纳假设方法,首先假设n % k = 0,c = k;k % n = 0,c = n,其他情况的话 c = 1,这种假设经过程序测试,发现是错误的,假如n = 6, k = 4很明显还是不能遍历所有元素。然后我继续使用归纳方法,举出很多种n和k的组合,最后大胆的假设c是n和k的最大公约数,事实证明,这是正确的。也许这个结论证明并不严谨,但已经足够解决这个问题了。

写出程序如下:

void rotate(vector<int>& nums, int k) {
        int n = nums.size();
        if (n == 0 || k == 0)
            return;
        // 求最大公约数
        int a = n, c = k, b = a % c;
        while (b != 0)
        {
            a = c;
            c = b;
            b = a % c;
        }
        // 依次替换
        while (c--)
        {
            int oldNum = nums[c];
            int curPos = (c + k) % n;
            while (curPos != c)
            {
                int curNum = nums[curPos];
                nums[curPos] = oldNum;
                curPos = (curPos + k) % n;
                oldNum = curNum;
            }
            nums[curPos] = oldNum;
        }
    }

这里要注意依次替换的时候,我们要使用一个临时变量oldNum来保存上一次被替换掉的元素。循环体内的赋值过程有些绕,要理清思绪。我在这里卡了一阵子,越想越头晕。。。

算法总结:

这个算法成功的将时间复杂度控制在O(n),而且空间复杂度是O(1),更可贵的是所有操作没有改变内存位置。可以说是非常理想了。

查看了下网上的其他方法,大体上有三种,

一种是将所有元素从后往前依次移动一个位置,然后外层循环k次。这种方法时间复杂度为O(n*k),不消说,没有多少效率。

代表算法(C语言实现):

void rotate(int nums[], int n, int k) {
    int temp;
    for (int step = 0; step < k; step++) {
        temp = nums[n-1];
        for (int i = n-1; i > 0; --i)
        {
            nums[i] = nums[i-1];
        }
        nums[0] = temp;
    }
}

一种是反转数组的方法,先把整个数组reverse,然后把前面的reverse回来,再把后面的reverse回来,代表算法:

void rotate(int nums[], int n, int k) {
    k = k % n;
    reverse(nums, nums + n);
    reverse(nums, nums + k);
    reverse(nums + k, nums + n);
}

这个算法比较高明,时间复杂度可以控制在O(n),空间复杂度也是O(1),非常理想,但要看你的reverse实现是否高效

还有一种方法个人认为比较投机取巧,它使用C语言的内存操作函数,改变了内存地址,有一定风险,但算法确实高效

void rotate(int nums[], int n, int k) {
    k = k % n;
    if (k == 0) return;
    int *temp = new int[n];
    memcpy(temp, nums+(n-k), sizeof(int)*k);
    memcpy(temp+k, nums, sizeof(int)*(n-k));
    memcpy(nums, temp, sizeof(int)*n);
    delete[] temp;
}

 

算法——让人类思维更加理性

Rotate Array leetcode

标签:

原文地址:http://www.cnblogs.com/sdlwlxf/p/5095013.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!