标签:des blog http color os strong
// Apply Canny algorithm cv::Mat contours; cv::Canny(image, // gray-level image contours, // output contours 125, // low threshold 350); // high threshold
When applied on the following image: The result is as follows:
cv::Mat contoursInv; // inverted image cv::threshold(contours,contoursInv, 128, // values below this 255, // becomes this cv::THRESH_BINARY_INV);
cv::Mat image = cv:: imread("../road.jpg" , 0 ); if (! image.data ) { return 0 ; } cv ::namedWindow( "Original Image" ); cv ::imshow( "Original Image" , image); // Apply Canny algorithm cv ::Mat contours; cv ::Canny( image, contours , 125 , 350 ); cv ::namedWindow( "Canny edges" ); cv ::imshow( "Canny edges" , contours); cv ::Mat result( contours.rows ,contours. cols,CV_8U ,cv:: Scalar(255 )); image .copyTo( result); // Hough transform for line detection std ::vector< cv::Vec2f > lines; cv ::HoughLines( contours, lines , 1, PI / 180 , // step size 80); // minimum number of votes std ::vector< cv::Vec2f >::const_iterator it = lines.begin (); while ( it != lines .end()) { float rho = (*it )[0]; // first element is distance rho float theta = (*it )[1]; // second element is angle theta if ( theta < PI /4. || theta > 3.* PI/4. ) { // ~vertical line // point of intersection of the line with first row cv ::Point pt1( rho / cos (theta), 0); // point of intersection of the line with last row cv ::Point pt2(( rho - result .rows * sin(theta )) / cos(theta ), result. rows); // draw a while line cv ::line( result, pt1 , pt2, cv::Scalar (255), 1); } else { //~horizontal line // point of intersection of the line with first column cv ::Point pt1( 0, rho / sin( theta)); // point of intersection of the line with last column cv ::Point pt2( result.cols , ( rho - result .cols * cos(theta )) / sin(theta )); // draw a white line cv ::line( result, pt1 , pt2, cv::Scalar (255), 1); } ++it; } cv ::namedWindow( "Detected lines with hough" ); cv ::imshow( "Detected lines with hough" , result);
gets the following results:
#if ! defined LINE_FINDER #define LINE_FINDER #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <vector> #define PI 3.1415926 class LineFinder { private: // original image cv ::Mat img; // vector containing the end points // of the detected lines std ::vector< cv::Vec4i > lines; // accumulator resolution parameters double deltaRho; double deltaTheta; // minimum number of votes that a line // must receive before being considered int minVote; // min length of a line double minLength; // max allowed gap along the line double maxGap; public: // Default accumulator resolution is 1 pixel by 1 degree // no gap, no minimum length LineFinder () : deltaRho(1 ), deltaTheta( PI / 180), minVote (10), minLength(0. ), maxGap( 0.) {} // Set the resolution of the accumulator void setAccResolution( double dRho, double dTheta ) { deltaRho = dRho; deltaTheta = dTheta; } // Set the minimum number of votes void setMinVote( int minV) { minVote = minV; } // Set line length and gap void setLineLengthAndGap( double length, double gap ) { minLength = length; maxGap = gap; } // Apply probabilistic Hough Transform std ::vector< cv::Vec4i > findLines( cv::Mat &binary) { lines .clear(); cv ::HoughLinesP( binary, lines , deltaRho , deltaTheta, minVote, minLength , maxGap); return lines; } // Draw the detected lines on image void drawDetectedLines( cv::Mat &image, cv ::Scalar color = cv::Scalar (255, 255, 255)) { // Draw the lines std ::vector< cv::Vec4i >::const_iterator it2 = lines.begin (); while ( it2 != lines .end()){ cv ::Point pt1((* it2)[0 ], (* it2)[1 ]); cv ::Point pt2((* it2)[2 ], (* it2)[3 ]); cv ::line( image, pt1 , pt2, color); ++ it2; } } }; #endif
main.cpp:
// Create LineFinder instance LineFinder finder ; // Set probabilistic Hough parameters finder .setLineLengthAndGap( 100, 20); finder .setMinVote( 80); // Detect lines and draw them std ::vector< cv::Vec4i > linesP = finder.findLines (contours); finder .drawDetectedLines( image); cv ::namedWindow( "Detected Lines with HoughP" ); cv ::imshow( "Detected Lines with HoughP" , image);
result:
image = cv ::imread( "../chariot.jpg" , 0 ); cv ::GaussianBlur( image, image , cv:: Size(5 , 5 ), 1.5 ); std ::vector< cv::Vec3f > circles; cv ::HoughCircles( image, circles , CV_HOUGH_GRADIENT, 2, // accumulator resolution (size of the image / 2) 50, // minimum distance between two circles 200, // Canny high threshold 100, // minimum number of votes 25, 100); // min and max radius std ::vector< cv::Vec3f >::const_iterator itc = circles.begin (); while ( itc != circles .end()) { cv ::circle( image, cv ::Point((* itc)[0 ], (* itc)[1 ]), // circle centre (*itc)[ 2], // circle radius cv ::Scalar( 255), // color 2 // thickness ); ++ itc; } cv ::namedWindow( "Detected Circles" ); cv ::imshow( "Detected Circles" , image);
result:
// Fitting a line to a set of points int n = 0; // we select line 0 // black image cv ::Mat oneline( contours.size (), CV_8U, cv::Scalar (0)); // white line cv ::line( oneline, cv ::Point( linesP[n ][0], linesP[n ][1]), cv ::Point( linesP[n ][2], linesP[n ][3]), cv ::Scalar( 255), 5); // contours And white line cv ::bitwise_and( contours, oneline , oneline); cv ::namedWindow( "One line" ); cv ::imshow( "One line" , oneline);
std::vector <cv:: Point> points ; // Iterate over the pixels to obtain all point positions for ( int y = 0; y < oneline .rows; y++) { // row y uchar *rowPtr = oneline.ptr <uchar>( y); for ( int x = 0; x < oneline .cols; x++) { // column x // if on a contour if ( rowPtr[x ]) { points .push_back( cv::Point (x, y)); } } } cv ::Vec4f line; cv ::fitLine( cv::Mat (points), line, CV_DIST_L2 , // distance type 0, // not used with L2 distance 0.01, 0.01 // accuracy ); int x0 = line[2 ]; // a point on the line int y0 = line[3 ]; int x1 = x0 - 200 * line[0 ]; // add a vector of length 200 int y1 = y0 - 200 * line[1 ]; // using the unit vector image = cv:: imread("../road.jpg" , 0 ); cv ::line( image, cv ::Point( x0, y0 ), cv:: Point(x1 , y1), cv::Scalar (0), 3); cv ::namedWindow( "Estimated line" ); cv ::imshow( "Estimated line" , image);
cv::Mat image = cv:: imread("../binaryGroup.bmp" , 0 ); if (! image.data ) { return 0 ; } cv ::namedWindow( "Binary Group" ); cv ::imshow( "Binary Group" , image); std ::vector< std::vector <cv:: Point>> contours ; cv ::findContours( image, contours , // a vector of contours CV_RETR_EXTERNAL , // retrieve the external contours CV_CHAIN_APPROX_NONE // all pixels of each contours ); // Draw black contours on a white image cv ::Mat result( image.size (), CV_8U, cv::Scalar (255)); cv ::drawContours( result, contours , -1, // draw all contours cv ::Scalar( 0), // in black 2 // with a thickness of 2 ); cv ::namedWindow( "Contours" ); cv ::imshow( "Contours" , result); //Eliminate too short or too long contours int cmin = 100; // minimum contour length int cmax = 1000; //maximum contour length std ::vector< std::vector <cv:: Point>>::const_iterator itc = contours. begin(); while ( itc != contours .end()) { if ( itc->size () < cmin || itc ->size() > cmax ) { itc = contours. erase(itc ); } else ++itc; } // draw contours on the original image cv ::Mat original = cv::imread ("../group.jpg"); cv ::drawContours( original, contours , - 1, cv ::Scalar( 255), 2); cv ::namedWindow( "Contours on Animals" ); cv ::imshow( "Contours on Animals" , original);
// draw contours on the white image result .setTo( cv::Scalar (255)); cv ::drawContours( result, contours , -1, // draw all contours cv ::Scalar( 0), // in black 2 // with a thickness of 2 ); cv ::namedWindow( "Contours on Animals" ); cv ::imshow( "Contours on Animals" , result); // Computing components‘ shape descriptor--------------------------- // testing the bounding box cv ::Rect r0 = cv::boundingRect (cv:: Mat(contours [0])); cv ::rectangle( result, r0 , cv:: Scalar(0 ), 2 ); // testing the enclosing circle float radius; cv ::Point2f center; cv ::minEnclosingCircle( cv::Mat (contours[ 1]), center , radius); cv ::circle( result, cv ::Point( center), static_cast<int >(radius), cv::Scalar (0), 2); // testing the approximate polygon std ::vector< cv::Point > poly; cv ::approxPolyDP( cv::Mat (contours[ 2]), poly , 5 , true ); // Iterate over each segment and draw it std ::vector< cv::Point >::const_iterator itp = poly.begin (); while ( itp != (poly. end() - 1 )) { cv ::line( result, *itp, *(itp + 1 ), cv:: Scalar(0 ), 2 ); ++ itp; } // last point linked to first point cv ::line( result, *(poly. begin()), *(poly. end() - 1 ), cv:: Scalar(20 ), 2 ); // testing the convex hull std ::vector< cv::Point > hull; cv ::convexHull( cv::Mat (contours[ 3]), hull ); // testing the moments iterate over all contours itc = contours. begin(); while ( itc != contours .end()) { // compute all moments cv ::Moments mom = cv::moments (cv:: Mat(*itc ++)); // draw mass center cv ::circle( result, // position of mass center converted to integer cv ::Point( mom.m10 / mom. m00, mom .m01 / mom.m00 ), 2, cv ::Scalar( 0), 2 // draw black dot ); } cv ::namedWindow( "Some shape descriptors" ); cv ::imshow( "Some shape descriptors" , result);
Learning OpenCV Lecture 6 (Extracting Lines,Contours, and Components),布布扣,bubuko.com
Learning OpenCV Lecture 6 (Extracting Lines,Contours, and Components)
标签:des blog http color os strong
原文地址:http://www.cnblogs.com/starlitnext/p/3861414.html