标签:
function [L,U,pv,qv] = lugui(A,pivotstrat) %LUGUI Gaussian elimination demonstration. % % LUGUI(A) shows the steps in LU decomposition by Gaussian elimination. % At each step of the elimination, the pivot that would be chosen by % MATLAB‘s partial pivoting algorithm is shown in magenta. You can use % the mouse to pick any pivot. The pivot is shown in red, the emerging % columns of L in green, and the emerging rows of U in blue. % % LUGUI with no arguments uses a random integer test matrix. % Type ‘help golub‘ for a description of the test matrices. % % A popup menu allows the pivot strategy to be changed dynamically. % lugui(A,‘pick‘), choose pivots with the mouse. % lugui(A,‘diagonal‘), use diagonal elements as pivots. % lugui(A,‘partial‘), use the largest element in the current column. % lugui(A,‘complete‘), use the largest element in the unreduced matrix. % % [L,U,p,q] = lugui(A,...) returns a lower triangular L, an upper % triangular U and permutation vectors p and q so that L*U = A(p,q). % % See also PIVOTGOLF. % Initialize if nargin < 2 pivotstrat = ‘pick‘; end if nargin < 1 n = 2 + ceil(6*rand); A = golub(n); end Asave = A; [m,n] = size(A); shg clf dx = 100; dy = 30; warns = warning(‘off‘,‘MATLAB:divideByZero‘); set(gcf,‘double‘,‘on‘,‘name‘,‘LU Gui‘, ... ‘menu‘,‘none‘,‘numbertitle‘,‘off‘,‘color‘,‘white‘, ... ‘pos‘,[480-(dx/2)*min(9,n) 320 (n+1)*dx (m+3)*dy], ... ‘windowbuttonupfcn‘,‘set(gcf,‘‘tag‘‘,‘‘pivot‘‘)‘) stop = uicontrol(‘style‘,‘toggle‘,‘string‘,‘X‘,‘fontweight‘,‘bold‘, ... ‘back‘,‘w‘,‘pos‘,[(n+1)*dx-25 (m+3)*dy-25 25 25]); axes(‘pos‘,[0 0 1 1]) axis off Lcolor = [0 .65 0]; Ucolor = [0 0 .90]; Acolor = [0 0 0]; PartialPivotColor = [1 0 1]; PivotColor = [1 0 0]; TempColor = [1 1 1]; paws = 0.1; % Each element has its own handle for j = 1:n for i = 1:m t(i,j) = text(‘units‘,‘pixels‘,‘string‘,spf(A(i,j)), ... ‘fontname‘,‘courier‘,‘fontweight‘,‘bold‘,‘fontsize‘,14, ... ‘horiz‘,‘right‘,‘color‘,Acolor, ... ‘pos‘,[20+j*dx 20+(m+2-i)*dy],‘userdata‘,[i j], ... ‘buttondownfcn‘,‘set(gcf,‘‘userdata‘‘,get(gco,‘‘userdata‘‘))‘); end end % Menus switch lower(pivotstrat) case ‘pick‘, val = 1; case ‘diagonal‘, val = 2; case ‘partial‘, val = 3; case ‘complete‘, val = 4; otherwise, val = 1; end pivotstrat = uicontrol(‘pos‘,[60+(dx/2)*(n-2) 20 180 20],‘style‘,‘pop‘, ... ‘val‘,val,‘fontsize‘,12,‘back‘,‘white‘,‘string‘,{‘Pick a pivot‘, ... ‘Diagonal pivoting‘,‘Partial pivoting‘,‘Complete pivoting‘}); % Elimination pv = 1:m; qv = 1:n; for k = 1:min(m,n) % If possible, quit early if all(all(A(k:m,k:n)==0)) | all(all(~isfinite(A(k:m,k:n)))) for l = k:min(m,n) for i = l+1:m set(t(i,l),‘string‘,spf(A(i,l)),‘color‘,Lcolor) drawnow end for j = l:n set(t(l,j),‘string‘,spf(A(l,j)),‘color‘,Ucolor) drawnow end end break end if (m == n) & (k == n) p = n; q = n; else pp = min(find(abs(A(k:m,k)) == max(abs(A(k:m,k)))))+k-1; set(t(pp,k),‘color‘,PartialPivotColor) p = 0; q = 0; while p < k | q < k | p > m | q > n switch get(pivotstrat,‘val‘) case 1 % Pick a pivot with mouse pq = get(gcf,‘userdata‘); if isequal(get(gcf,‘tag‘),‘pivot‘) & ~isempty(pq) p = pq(1); q = pq(2); set(gcf,‘tag‘,‘‘,‘userdata‘,[]) else drawnow end case 2 % Diagonal pivoting p = k; q = k; case 3 % Partial pivoting p = pp; q = k; case 4 % Complete pivoting [p,q] = find(abs(A(k:m,k:n)) == max(max(abs(A(k:m,k:n))))); p = p(1)+k-1; q = q(1)+k-1; end if get(stop,‘value‘) == 1, break, end end if get(stop,‘value‘) == 1, break, end set(t(pp,k),‘color‘,Acolor) set(t(p,q),‘color‘,PivotColor) end if get(stop,‘value‘) == 1, break, end pause(10*paws) % Swap columns A(:,[q,k]) = A(:,[k,q]); qv([q,k]) = qv([k,q]); for s = .05:.05:1 for i = 1:m set(t(i,k),‘pos‘,[20+(k+s*(q-k))*dx 20+(m+2-i)*dy]) set(t(i,q),‘pos‘,[20+(q+s*(k-q))*dx 20+(m+2-i)*dy]) end drawnow end t(:,[q,k]) = t(:,[k,q]); for i = 1:m set(t(i,k),‘string‘,spf(A(i,k)),‘userdata‘,[i k]) set(t(i,q),‘string‘,spf(A(i,q)),‘userdata‘,[i q]) end pause(10*paws) % Swap rows A([p,k],:) = A([k,p],:); pv([p,k]) = pv([k,p]); for s = .05:.05:1 for j = 1:n set(t(k,j),‘pos‘,[20+j*dx 20+(m+2-(k+s*(p-k)))*dy]) set(t(p,j),‘pos‘,[20+j*dx 20+(m+2-(p+s*(k-p)))*dy]) end drawnow end t([p,k],:) = t([k,p],:); pause(10*paws) for j = k:n set(t(k,j),‘string‘,spf(A(k,j)),‘userdata‘,[k j]) set(t(p,j),‘string‘,spf(A(p,j)),‘userdata‘,[p j]) end pause(10*paws) % Skip step if column is all zero if all(A(k:m,k) == 0) for i = k+1:m set(t(i,k),‘string‘,spf(A(i,k)),‘color‘,Lcolor) drawnow end for j = k:n set(t(k,j),‘string‘,spf(A(k,j)),‘color‘,Ucolor) drawnow end else % Compute multipliers in L for i = k+1:m A(i,k) = A(i,k)/A(k,k); set(t(i,k),‘string‘,spf(A(i,k)),‘color‘,Lcolor) pause(paws) drawnow end % Elimination for j = k+1:n for i = k+1:m set(t(i,j),‘color‘,TempColor) drawnow pause(paws) A(i,j) = A(i,j) - A(i,k)*A(k,j); set(t(i,j),‘string‘,spf(A(i,j)),‘color‘,Acolor) drawnow pause(paws) end end for j = k:n set(t(k,j),‘string‘,spf(A(k,j)),‘color‘,Ucolor) drawnow end pause(paws) end if k < min(m,n), pause(10*paws), end end % Seperate L and U into two matrices delete(pivotstrat) for s = .1:.1:1.5 for j = 1:n for i = 1:m if i <= j set(t(i,j),‘pos‘,[20+(j+.10*s)*dx 20+(m+2-i)*dy]) else set(t(i,j),‘pos‘,[20+(j-.10*s)*dx 20+(m+2-s-i)*dy]) end end end drawnow end % Insert ones on diagonal of L r = min(m,n); for j = 1:r text(‘units‘,‘pixels‘,‘string‘,spf(1.0), ... ‘fontname‘,‘courier‘,‘fontweight‘,‘bold‘,‘fontsize‘,14, ... ‘horiz‘,‘right‘,‘color‘,Lcolor, ... ‘pos‘,[20+(j-0.15)*dx 20+(m+.5-j)*dy]); end drawnow warning(warns) if nargout > 0 L = tril(A(:,1:r),-1) + eye(m,r); U = triu(A(1:r,:)); else set(gcf,‘userdata‘,Asave) set(stop,‘value‘,0,‘callback‘,‘close(gcf)‘) uicontrol(‘pos‘,[(n+1)*dx-70 10 60 20],‘string‘,‘repeat‘, ... ‘back‘,‘w‘,‘fontsize‘,12,‘callback‘,‘lugui(get(gcf,‘‘userdata‘‘))‘) end %------------------------------------------------------------ function s = spf(aij) % Subfunction to format text strings if aij == 0 f = ‘%10.0f‘; elseif (abs(aij) < 1.e-4) | (abs(aij) >= 1.e4) f = ‘%10.1e‘; else f = ‘%10.4f‘; end s = sprintf(f,aij);
标签:
原文地址:http://www.cnblogs.com/mengfanrong/p/5096127.html